Kun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8359141/publications.pdf

Version: 2024-02-01

233421 186265 2,906 45 150 28 citations h-index g-index papers 159 159 159 1813 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photonics Research, 2022, 10, 126.	7.0	38
2	Temperature Compensation of Optical Fiber Current Sensors With a Static Bias. IEEE Sensors Journal, 2022, 22, 352-356.	4.7	13
3	Comparison of similar Mueller and Jones matrix method in catheter based polarization sensitive optical coherence tomography. Optics and Laser Technology, 2022, 147, 107691.	4.6	1
4	Is Ge an Excellent Material for Mid-IR Kerr Frequency Combs Around $3-\hat{l}\frac{1}{4}$ m Wavelengths?. Journal of Lightwave Technology, 2022, 40, 2097-2103.	4.6	3
5	Environment-Robust Polarization-Based Phase-Shift Dynamic Demodulation Method for Optical Fiber Acoustic Sensor. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	1
6	Reflective SFT-FBG Hybrid Micro-Probe for Simultaneous Measurement of Relative Humidity and Temperature. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	4
7	Real-Time Self-Calibrating Phase-Shifted Demodulation Method Based on Polarized Low-Coherence Interference for Optical Fiber Acoustic Sensor. IEEE Sensors Journal, 2022, 22, 8537-8543.	4.7	4
8	Analysis and reduction of noise-induced depolarization in catheter based polarization sensitive optical coherence tomography. Optics Express, 2022, 30, 11130.	3.4	2
9	Polarimetric Imaging Through Scattering Media: A Review. Frontiers in Physics, 2022, 10, .	2.1	24
10	Design of a Graphene-Enabled Dual-Mode Kerr Frequency Comb. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	2.9	4
11	Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. Advanced Photonics Research, 2022, 3, .	3.6	3
12	Physics-informed neural network for polarimetric underwater imaging. Optics Express, 2022, 30, 22512.	3.4	10
13	Rapid and wide-range pressure measurement at high-temperature using an intensity-compensation interrogation method. Optics and Lasers in Engineering, 2022, 157, 107116.	3.8	6
14	A Fiber-Optic Accelerometer Based on Extrinsic Fabry-Perot Interference for Low Frequency Micro-Vibration Measurement. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	5
15	Prefab Hollow Glass Microsphere-Based Immunosensor with Liquid Crystal Sensitization for Acute Myocardial Infarction Biomarker Detection. Biosensors, 2022, 12, 439.	4.7	2
16	High-sensitive and disposable myocardial infarction biomarker immunosensor with optofluidic microtubule lasing. Nanophotonics, 2022, 11, 3351-3364.	6.0	10
17	Hybrid Sapphire Dual-Fabry—Perot-Cavities Sensor for High Temperature and Refractive Index Measurement. Journal of Lightwave Technology, 2021, 39, 3911-3918.	4.6	14
18	Ultrasensitive Label-Free Biosensor Based on the Graphene-Oxide-Coated-U-Bent Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. Journal of Lightwave Technology, 2021, 39, 4013-4019.	4.6	16

#	Article	IF	Citations
19	Underwater imaging enhancement based on a polarization filter and histogram attenuation prior. Journal Physics D: Applied Physics, 2021, 54, 175102.	2.8	16
20	All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range. Photonics Research, 2021, 9, 521.	7.0	38
21	High Accuracy and Real-Time Positioning Using MODWT for Long Range Asymmetric Interferometer Vibration Sensors. Journal of Lightwave Technology, 2021, 39, 2205-2214.	4.6	12
22	Mechanical Filter-Based Differential Pressure Fiber-Optic Fabry-Perot Infrasound Sensor. IEEE Photonics Journal, 2021, 13, 1-10.	2.0	1
23	Review of Fiber Mechanical and Thermal Multi-Parameter Measurement Technologies and Instrumentation. Journal of Lightwave Technology, 2021, 39, 3724-3739.	4.6	14
24	Demonstration of Large Curvature Radius Shape Sensing Using Optical Frequency Domain Reflectometry in Multi-Core Fibers. IEEE Photonics Journal, 2021, 13, 1-9.	2.0	10
25	Underwater Imaging by Suppressing the Backscattered Light Based on Mueller Matrix. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	8
26	Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay. PhotoniX, 2021, 2, 18.	13.5	35
27	Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. Nanomaterials, 2021, 11, 2137.	4.1	5
28	Optical Fiber Distributed Vibration Sensing Using Grayscale Image and Multi-Class Deep Learning Framework for Multi-Event Recognition. IEEE Sensors Journal, 2021, 21, 19112-19120.	4.7	13
29	Complete self-calibration compact binary magneto-optic rotator based Mueller matrix polarimetry. Optics Express, 2021, 29, 30392.	3.4	0
30	Automatic underwater polarization imaging without background region or any prior. Optics Express, 2021, 29, 31283.	3.4	21
31	GPU-Based Real-Time Distributed Dynamic Strain Sensing in Optical Frequency Domain Reflectometry. IEEE Sensors Journal, 2021, 21, 24166-24176.	4.7	5
32	Real-Time Pressure Measurement Method Based on Rapid Phase Demodulation of Multi-Cavities F-P Sensor. IEEE Sensors Journal, 2021, 21, 26624-26630.	4.7	8
33	Dynamic Phase Extraction in an Ameliorated Distributed Vibration Sensor Using a Highly Stable Homodyne Detection. IEEE Sensors Journal, 2021, 21, 27005-27014.	4.7	7
34	Catheter-Based Polarization Sensitive Optical Coherence Tomography Using Similar Mueller Matrix Method. IEEE Transactions on Biomedical Engineering, 2020, 67, 60-68.	4.2	8
35	High-Resolution Temperature Sensor Based on Intracavity Sensing of Fiber Ring Laser. Journal of Lightwave Technology, 2020, 38, 2010-2014.	4.6	21
36	High Sensitivity Fiber Optic SPR Refractive Index Sensor Based on Multimode-No-Core-Multimode Structure. IEEE Sensors Journal, 2020, 20, 2967-2975.	4.7	23

#	Article	IF	CITATIONS
37	Distributed fiber optic vibration sensing with wide dynamic range, high frequency response, and multi-points accurate location. Optics and Laser Technology, 2020, 124, 105966.	4.6	18
38	MoSe ₂ -Au Based Sensitivity Enhanced Optical Fiber Surface Plasmon Resonance Biosensor for Detection of Goat-Anti-Rabbit IgG. IEEE Access, 2020, 8, 660-668.	4.2	33
39	High Sensitivity Distributed Static Strain Sensing Based on Differential Relative Phase in Optical Frequency Domain Reflectometry. Journal of Lightwave Technology, 2020, 38, 5825-5836.	4.6	32
40	Dual-Mode GVD Tailoring in a Convex Waveguide. IEEE Photonics Journal, 2020, 12, 1-6.	2.0	2
41	An Event Recognition Scheme Aiming to Improve Both Accuracy and Efficiency in Optical Fiber Perimeter Security System. Journal of Lightwave Technology, 2020, 38, 5783-5790.	4.6	29
42	A Novel Mach–Zehnder Interferometric Temperature Sensor Based on a Symmetrical Double-Grooved Structure. IEEE Sensors Journal, 2020, 20, 14850-14856.	4.7	10
43	Dual-Frequency CARS Excitation Source With Two Independent-Tunable Stokes Wavelengths Using PM-PCF and Vector Adjustment. Journal of Lightwave Technology, 2020, 38, 2392-2399.	4.6	7
44	Compact Vectorial Transverse Force Sensor Based on Two-Modal Interference in a Few-Mode Seven-Core Fiber. Journal of Lightwave Technology, 2020, 38, 2046-2052.	4.6	3
45	Distributed single fiber optic vibration sensing with high frequency response and multi-points accurate location. Optics and Lasers in Engineering, 2020, 129, 106060.	3.8	14
46	Refractive Index Sensor Based on Graphene Oxide-Coated Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. IEEE Access, 2020, 8, 109028-109037.	4.2	13
47	Force sensing based on distributed polarization coupling in polarization-maintaining fiber using finite element method. Optical Fiber Technology, 2020, 58, 102290.	2.7	0
48	The Correction of Nonlinearity in Wavelength Scanning Based on Long-OPD Interferometer for Fiber Bragg Grating Demodulation in Environment With Variable Temperature. IEEE Photonics Journal, 2020, 12, 1-10.	2.0	3
49	Weak Coupling Point Detection in Distributed Polarization Coupling Measurement Based on Variational Mode Decomposition. Journal of Lightwave Technology, 2020, , 1-1.	4.6	1
50	A Demodulation Method of Spatial Domain for Low-Coherence Interferometry With High Accuracy and Adaptability. IEEE Photonics Journal, 2020, 12, 1-11.	2.0	1
51	Orthogonal Phase Demodulation of Optical Fiber Fabry-Perot Interferometer Based on Birefringent Crystals and Polarization Technology. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	10
52	Flywheel-like diaphragm-based fiber-optic Fabry–Perot frequency tailored acoustic sensor. Journal Physics D: Applied Physics, 2020, 53, 415102.	2.8	20
53	Wall-thickness-controlled microbubble fabrication for WGM-based application. Applied Optics, 2020, 59, 5052.	1.8	13
54	GPU-based fast processing for a distributed acoustic sensor using an LFM pulse. Applied Optics, 2020, 59, 11098.	1.8	4

#	Article	IF	CITATIONS
55	All optic-fiber coupled plasmon waveguide resonance sensor using ZrS ₂ based dielectric layer. Optics Express, 2020, 28, 11280.	3.4	11
56	Theory of autocalibration feasibility and precision in full Stokes polarization imagers. Optics Express, 2020, 28, 15268.	3.4	16
57	Graphene-based dual-mode modulators. Optics Express, 2020, 28, 18456.	3.4	12
58	Optical fiber laser refractometer based on an open microcavity Mach-Zehnder interferometer with an ultra-low detection limit. Optics Express, 2020, 28, 30570.	3.4	15
59	Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing. Photonics Research, 2020, 8, 1093.	7.0	27
60	Composite wavelength tuning for precision Raman resonance in soliton self-frequency shift-based coherent anti-Stokes Raman scattering. Applied Physics Express, 2020, 13, 092002.	2.4	2
61	Cryogen adaptive and integrated differential pressure sensor for level sensing based on an optical Fabry–Perot interferometer. Applied Optics, 2020, 59, 2457.	1.8	2
62	Virtual-block-array phase analysis for distributed acoustic sensors with a high signal-to-noise ratio reconstruction waveform. Optics Express, 2020, 28, 24577.	3.4	2
63	Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe ₂ @Au nanoparticles-polydopamine. Biomedical Optics Express, 2020, 11, 6840.	2.9	14
64	High-consistency fiber-optic Fabry–Perot sensor based on MEMS for simultaneous temperature and liquid refractive index measurement. Applied Optics, 2020, 59, 9353.	1.8	6
65	Data augmentation of optical time series signals for small samples. Applied Optics, 2020, 59, 8848.	1.8	3
66	An Optical Fiber-Based Data-Driven Method for Human Skin Temperature 3-D Mapping. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1141-1150.	6.3	7
67	Fringe-Distortion-Correction for Polarized Low-Coherence Interferometry With Phosphor-Based LED. Journal of Lightwave Technology, 2019, 37, 3557-3562.	4.6	3
68	Femtosecond Pulse Temporal Overlap Estimation and Adjustment in SSFS-Based CARS System. IEEE Access, 2019, 7, 131317-131325.	4.2	4
69	Demonstration of Compact In situ Mueller-Matrix Polarimetry Based on Binary Polarization Rotators. IEEE Access, 2019, 7, 144561-144571.	4.2	8
70	Long-Sensing-Length Strain Sensor Based on Optical Fiber Fabry-Perot Interferometer With HCF-SMF Structure. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	7
71	A Compact Fiber Optic Fabry–Perot Sensor for Simultaneous Measurement of Acoustic and Temperature. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	14
72	A FBG-OCT Catheter to Reconstruct Vascular Shape in Intravascular Optical Coherence Tomography. IEEE Photonics Technology Letters, 2019, 31, 701-704.	2.5	10

#	Article	IF	CITATIONS
73	An S-transform-Based Positioning Method for Asymmetric Interferometer Disturbance Sensors. Journal of Lightwave Technology, 2019, 37, 3201-3207.	4.6	9
74	Joint Noise Reduction for Contrast Enhancement in Stokes Polarimetric Imaging. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	2
75	Self-Filtering High-Resolution Dual-Sapphire-Fiber-Based High-Temperature Sensor. Journal of Lightwave Technology, 2019, 37, 1408-1414.	4.6	21
76	High-Sensitivity Temperature Sensor Based on Microsphere Cavity in Super Larger Thermo-Optic Coefficient Germanium-core Fiber. IEEE Access, 2019, 7, 182658-182663.	4.2	4
77	Variational Mode Decomposition-Based Event Recognition in Perimeter Security Monitoring With Fiber Optic Vibration Sensor. IEEE Access, 2019, 7, 182580-182587.	4.2	13
78	Highly Sensitive Temperature Sensor Based on Hollow Microsphere for Ocean Application. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	4
79	Theoretical and Experimental Investigation of an All-Fiber Waveguide Coupled Surface Plasmon Resonance Sensor With Au–ZnO–Au Sandwich Structure. IEEE Access, 2019, 7, 169961-169968.	4.2	4
80	Fiber Optic Fabry-Perot Pressure Sensor With Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection. Journal of Lightwave Technology, 2019, 37, 2719-2725.	4.6	47
81	Pseudo-polarimetric Method for Dense Haze Removal. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	11
82	High-accuracy hybrid fiber-optic Fabry-Pérot sensor based on MEMS for simultaneous gas refractive-index and temperature sensing. Optics Express, 2019, 27, 4204.	3.4	33
83	Fiber optical temperature compensated anemometer based on dual Fabry-Perot sensors with sealed cavity. Optics Express, 2019, 27, 18157.	3.4	15
84	Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing. Optics Express, 2019, 27, 19188.	3.4	15
85	Multimode interferometer-based torsion sensor employing perfluorinated polymer optical fiber. Optics Express, 2019, 27, 28123.	3.4	10
86	Method of damage location determination based on a neural network using a single fiber Bragg grating sensor. Applied Optics, 2019, 58, 7251.	1.8	11
87	Underwater Image Recovery Under the Nonuniform Optical Field Based on Polarimetric Imaging. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	60
88	Probabilistic Event Discrimination Algorithm for Fiber Optic Perimeter Security Systems. Journal of Lightwave Technology, 2018, 36, 2069-2075.	4.6	38
89	An Improved Optical Fiber Remote Sensing Method Based on Polarized Low-Coherence Interferometry. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	4
90	Magnetic Field Sensing Based on a Ferrofluid-Coated Multimode Interferometer in a Fiber-Loop Ring-Down Cavity. IEEE Sensors Journal, 2018, 18, 3206-3210.	4.7	19

#	Article	IF	Citations
91	Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber. Optics Communications, 2018, 410, 552-558.	2.1	21
92	Two-dimensional distributed strain sensing with an Archimedean spiral arrangement in optical frequency domain reflectometry. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2018, 1, 187-190.	3.2	1
93	Experimental and analytical investigation of LP01-LP11 mode interference. Optical Fiber Technology, 2018, 46, 258-264.	2.7	2
94	Simultaneous Measurement of Pressure and Temperature Based on Adjustable Line Scanning Polarized Low-Coherence Interferometry With Compensation Plate. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	3
95	Polarimetric image recovery in turbid media employing circularly polarized light. Optics Express, 2018, 26, 25047.	3.4	60
96	Self-marked HCN gas based FBG demodulation in thermal cycling process for aerospace environment. Optics Express, 2018, 26, 22944.	3.4	18
97	Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry. Optics Express, 2018, 26, 13042.	3.4	44
98	Temperature Insensitive and Integrated Differential Pressure Sensor for Liquid Level Sensing Based on an Optical Fiber Fabry–Perot Interferometer. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	13
99	Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review. Sensors, 2018, 18, 1072.	3.8	192
100	Frequency Demodulation of Dynamic Stress Based on Distributed Polarization Coupling System. Journal of Lightwave Technology, 2018, 36, 2094-2099.	4.6	10
101	Optical fiber Fabry–Perot interferometer based on phase-shifting technique and birefringence crystals. Optics Express, 2018, 26, 21606.	3.4	13
102	Polarimetric image recovery method combining histogram stretching for underwater imaging. Scientific Reports, 2018, 8, 12430.	3.3	70
103	An Improved Polarization Compensation Method for Interferometric Fiber-Optic Intrusion Sensors. IEEE Photonics Technology Letters, 2017, 29, 834-837.	2.5	10
104	Enhancing Visibility of Polarimetric Underwater Image by Transmittance Correction. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	33
105	Hybrid Feature Extraction-Based Intrusion Discrimination in Optical Fiber Perimeter Security System. IEEE Photonics Journal, 2017, 9, 1-12.	2.0	17
106	Optical Current Sensor With Dual-Wavelength Configuration for Improving Temperature Robustness. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	15
107	A fast positioning algorithm for the asymmetric dual Mach–Zehnder interferometric infrared fiber vibration sensor. Infrared Physics and Technology, 2017, 85, 359-363.	2.9	8
108	Colorimetric discrimination for Stokes polarimetric imaging. Optics Express, 2017, 25, 3765.	3.4	4

#	Article	lF	Citations
109	Optimization of instrument matrix for Mueller matrix ellipsometry based on partial elements analysis of the Mueller matrix. Optics Express, 2017, 25, 18872.	3.4	27
110	Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor. Optics Express, 2017, 25, 31937.	3.4	12
111	Polarized low-coherence interferometer based on a matrix CCD and birefringence crystal with a two-dimensional angle. Optics Express, 2017, 25, 15977.	3.4	9
112	Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System. Journal of Lightwave Technology, 2017, 35, 5079-5085.	4.6	31
113	Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing. Photonics Research, 2016, 4, 322.	7.0	37
114	High-Efficiency Endpoint Detection in Optical Fiber Perimeter Security. Journal of Lightwave Technology, 2016, 34, 5049-5055.	4.6	12
115	An Improved Positioning Algorithm in a Long-Range Asymmetric Perimeter Security System. Journal of Lightwave Technology, 2016, 34, 5278-5283.	4.6	18
116	A Continuous Wavelet Transform Based Time Delay Estimation Method for Long Range Fiber Interferometric Vibration Sensor. Journal of Lightwave Technology, 2016, 34, 3785-3789.	4.6	28
117	Multispectral Stokes Imaging Polarimetry Based on Color CCD. IEEE Photonics Journal, 2016, 8, 1-10.	2.0	7
118	Underwater image recovery considering polarization effects of objects. Optics Express, 2016, 24, 9826.	3.4	128
119	Distributed Strain and Temperature Discrimination Using Two Types of Fiber in OFDR. IEEE Photonics Journal, 2016, 8, 1-8.	2.0	29
120	A novel magnetic fluid based all-fiber-optic vector magnetometer. , 2016, , .		0
121	An Approach for Increasing User Capacity of OCDMA System Based on Vernier Effect. Journal of Lightwave Technology, 2016, 34, 4877-4883.	4.6	6
122	Event Discrimination of Fiber Disturbance Based on Filter Bank in DMZI Sensing System. IEEE Photonics Journal, 2016, 8, 1-14.	2.0	11
123	An EMD-Based Filtering Algorithm for the Fiber-Optic SPR Sensor. IEEE Photonics Journal, 2016, 8, 1-8.	2.0	12
124	Long-Range Distributed Fiber Vibration Sensor Using an Asymmetric Dual Mach–Zehnder Interferometers. Journal of Lightwave Technology, 2016, 34, 2235-2239.	4.6	63
125	Optimal distribution of integration time for intensity measurements in Stokes polarimetry. Optics Express, 2015, 23, 27690.	3.4	24
126	An Improved Positioning Algorithm With High Precision for Dual Mach–Zehnder Interferometry Disturbance Sensing System. Journal of Lightwave Technology, 2015, 33, 1954-1960.	4.6	44

#	Article	IF	CITATIONS
127	Deployment Optimization for One-Dimensional Optical Fiber Sensor Networks. Journal of Lightwave Technology, 2015, 33, 2997-3004.	4.6	5
128	Investigation of gas detection based on fiber laser intracavity absorption spectroscopy. , 2015, , .		0
129	Simultaneous Detection of Mixed Gases Based on Overlapped Spectra Separation With SLIDT. IEEE Photonics Technology Letters, 2015, 27, 794-797.	2.5	2
130	A High-Efficiency Multiple Events Discrimination Method in Optical Fiber Perimeter Security System. Journal of Lightwave Technology, 2015, 33, 4885-4890.	4.6	50
131	Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure. Sensors and Actuators B: Chemical, 2015, 212, 107-111.	7.8	45
132	Complete Characterization of Polarization-Maintaining Fibers Using Distributed Polarization Analysis. Journal of Lightwave Technology, 2015, 33, 372-380.	4.6	46
133	A Self-Healing Passive Fiber Bragg Grating Sensor Network. Journal of Lightwave Technology, 2015, 33, 2062-2067.	4.6	18
134	Polarimetric target detection under uneven illumination. Optics Express, 2015, 23, 23603.	3.4	24
135	Differential-pressure-based fiber-optic temperature sensor using Fabry–Perot interferometry. Optics Letters, 2015, 40, 1049.	3.3	45
136	Evaluation Parameter for Self-Healing FBG Sensor Networks After Multiple Fiber Failures. IEEE Photonics Journal, 2015, 7, 1-7.	2.0	2
137	Birefringence-Dispersion-Induced Frequency Domain Nonlinearity Compensation for Polarized Low-Coherence Interferometry Demodulation. Journal of Lightwave Technology, 2015, 33, 4842-4848.	4.6	9
138	Configurable Filter-Based Endpoint Detection in DMZI Vibration System. IEEE Photonics Technology Letters, 2014, 26, 1956-1959.	2.5	22
139	Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technology Letters, 2014, 26, 2070-2073.	2.5	55
140	Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry. Optics Letters, 2014, 39, 1827.	3.3	23
141	A Quantitative Robustness Evaluation Model for Optical Fiber Sensor Networks. Journal of Lightwave Technology, 2013, 31, 1240-1246.	4.6	22
142	An Elimination Method of Polarization-Induced Phase Shift and Fading in Dual Mach–Zehnder Interferometry Disturbance Sensing System. Journal of Lightwave Technology, 2013, 31, 3135-3141.	4.6	50
143	Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid. Optics Letters, 2013, 38, 3999.	3.3	229
144	Chaotic ultraâ€wideband over fiber link based on optical feedback laser diode. Microwave and Optical Technology Letters, 2013, 55, 1504-1507.	1.4	4

#	Article	IF	CITATION
145	Birefringence dispersion compensation demodulation algorithm for polarized low-coherence interferometry. Optics Letters, 2013, 38, 3169.	3.3	18
146	A polarized low-coherence interferometry demodulation algorithm by recovering the absolute phase of a selected monochromatic frequency. Optics Express, 2012, 20, 18117.	3.4	39
147	Monitoring optical fiber sensor networks by optical frequency-domain reflectometry. , 2012, , .		0
148	A Simple and Effective Demodulation Method for Polarized Low-Coherence Interferometry. IEEE Photonics Technology Letters, 2012, 24, 1390-1392.	2.5	15
149	Adaptive Speckle Reduction in OCT Volume Data Based on Block-Matching and 3-D Filtering. IEEE Photonics Technology Letters, 2012, 24, 1802-1804.	2.5	13
150	High accuracy polarization measurements using binary polarization rotators. Optics Express, 2010, 18, 6667.	3.4	28