Mitchell J Weiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8358963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nature Genetics, 2022, 54, 874-884.	9.4	13
2	FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood, 2021, 137, 155-167.	0.6	22
3	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	9.4	305
4	Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nature Genetics, 2021, 53, 869-880.	9.4	37
5	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	13.7	175
6	Activation of Î ³ -globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nature Genetics, 2021, 53, 1177-1186.	9.4	21
7	An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis. Genome Research, 2020, 30, 472-484.	2.4	38
8	Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Molecular Systems Biology, 2020, 16, e9813.	3.2	21
9	Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells. Leukemia, 2019, 33, 181-190.	3.3	43
10	The autophagy-activating kinase ULK1 mediates clearance of free α-globin in β-thalassemia. Science Translational Medicine, 2019, 11, .	5.8	44
11	Regulation of gene expression by miR-144/451 during mouse erythropoiesis. Blood, 2019, 133, 2518-2528.	0.6	33
12	Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Advances, 2019, 3, 3379-3392.	2.5	121
13	<i>miR-144/451</i> represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia. Haematologica, 2018, 103, 406-416.	1.7	30
14	Nonspecific inhibition of erythropoiesis by short hairpin RNAs. Blood, 2018, 131, 2733-2736.	0.6	9
15	A Cell Culture Model of Resistance Arteries. Journal of Visualized Experiments, 2017, , .	0.2	3
16	UBE2O remodels the proteome during terminal erythroid differentiation. Science, 2017, 357, .	6.0	121
17	miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathogens, 2017, 13, e1006305.	2.1	77
18	Unlinking an IncRNA from Its Associated cis Element. Molecular Cell, 2016, 62, 104-110.	4.5	216

#	Article	IF	CITATIONS
19	Welcoming a new age for gene therapy in hematology. Blood, 2016, 127, 2523-2524.	0.6	5
20	A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nature Medicine, 2016, 22, 987-990.	15.2	279
21	The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nature Communications, 2016, 7, 12353.	5.8	37
22	Pharmacogenetics for Safe Codeine Use in Sickle Cell Disease. Pediatrics, 2016, 138, .	1.0	71
23	The Poly(C) Binding Protein Pcbp2 and Its Retrotransposed Derivative Pcbp1 Are Independently Essential to Mouse Development. Molecular and Cellular Biology, 2016, 36, 304-319.	1.1	55
24	Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. Cell Stem Cell, 2016, 18, 73-78.	5.2	78
25	MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood, 2015, 125, 1292-1301.	0.6	66
26	Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood, 2015, 125, 930-940.	0.6	87
27	Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15045.	1.8	17
28	Dysregulation of the Transforming Growth Factor β Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia. PLoS ONE, 2015, 10, e0134878.	1.1	27
29	Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics and Chromatin, 2015, 8, 16.	1.8	100
30	Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system. Genomics Data, 2015, 4, 1-7.	1.3	10
31	Anemia: progress in molecular mechanisms and therapies. Nature Medicine, 2015, 21, 221-230.	15.2	209
32	p47phox and reactive oxygen species production modulate expression of microRNA-451 in macrophages. Free Radical Research, 2015, 49, 25-34.	1.5	18
33	Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. Journal of Clinical Investigation, 2015, 125, 993-1005.	3.9	65
34	Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells. Journal of Clinical Investigation, 2015, 125, 2369-2374.	3.9	29
35	Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis. Genome Research, 2014, 24, 1932-1944.	2.4	88
36	Dynamic shifts in occupancy by TAL1 are guided by GATA factors and drive large-scale reprogramming of gene expression during hematopoiesis. Genome Research, 2014, 24, 1945-1962.	2.4	71

#	Article	IF	CITATIONS
37	Erythro-megakaryocytic transcription factors associated with hereditary anemia. Blood, 2014, 123, 3080-3088.	0.6	50
38	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	13.7	1,444
39	Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood, 2014, 123, 1927-1937.	0.6	169
40	Trim58 Degrades Dynein and Regulates Terminal Erythropoiesis. Developmental Cell, 2014, 30, 688-700.	3.1	75
41	Post-translational Transformation of Methionine to Aspartate Is Catalyzed by Heme Iron and Driven by Peroxide. Journal of Biological Chemistry, 2014, 289, 22342-22357.	1.6	29
42	Personalized Platelet Transfusions: One Step Closer to the Clinic. Cell Stem Cell, 2014, 14, 425-426.	5.2	1
43	Immune hemolytic anemia with drugâ€induced antibodies to carboplatin and vincristine in a pediatric patient with an optic pathway glioma. Transfusion, 2014, 54, 2901-2905.	0.8	8
44	Iron-laden macrophage in autoimmune disease. Blood, 2014, 123, 469-469.	0.6	1
45	Hematopoietic Differentiation of Pluripotent Stem Cells in Culture. Methods in Molecular Biology, 2014, 1185, 181-194.	0.4	42
46	miR-451 Deficiency Is Associated with Altered Endometrial Fibrinogen Alpha Chain Expression and Reduced Endometriotic Implant Establishment in an Experimental Mouse Model. PLoS ONE, 2014, 9, e100336.	1.1	32
47	Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood, 2013, 121, 4925-4929.	0.6	104
48	Congenital dyserythropoietic anemias: III's a charm. Blood, 2013, 121, 4614-4615.	0.6	4
49	Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood, 2013, 122, e33-e43.	0.6	44
50	The calcineurin-NFAT pathway negatively regulates megakaryopoiesis. Blood, 2013, 121, 3205-3215.	0.6	37
51	α-Hemoglobin Stabilizing Protein (AHSP) Markedly Decreases the Redox Potential and Reactivity of α-Subunits of Human HbA with Hydrogen Peroxide. Journal of Biological Chemistry, 2013, 288, 4288-4298.	1.6	29
52	Hemoglobin Variants: Biochemical Properties and Clinical Correlates. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a011858-a011858.	2.9	192
53	α-Hemoglobin-stabilizing Protein (AHSP) Perturbs the Proximal Heme Pocket of Oxy-α-hemoglobin and Weakens the Iron-Oxygen Bond*. Journal of Biological Chemistry, 2013, 288, 19986-20001.	1.6	12
54	The secreted lymphangiogenic factor CCBE1 is essential for fetal liver erythropoiesis. Blood, 2013, 121, 3228-3236.	0.6	26

#	Article	IF	CITATIONS
55	Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood, 2013, 122, 912-921.	0.6	82
56	Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood, 2013, 122, 2047-2051.	0.6	75
57	Long noncoding RNAs in biology and hematopoiesis. Blood, 2013, 121, 4842-4846.	0.6	53
58	miR-451 Regulates Dendritic Cell Cytokine Responses to Influenza Infection. Journal of Immunology, 2012, 189, 5965-5975.	0.4	127
59	Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17573-17578.	3.3	108
60	Functional Regulation of Pre-B-cell Leukemia Homeobox Interacting Protein 1 (PBXIP1/HPIP) in Erythroid Differentiation. Journal of Biological Chemistry, 2012, 287, 5600-5614.	1.6	36
61	Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17579-17584.	3.3	138
62	Kinetics of α-Globin Binding to α-Hemoglobin Stabilizing Protein (AHSP) Indicate Preferential Stabilization of Hemichrome Folding Intermediate. Journal of Biological Chemistry, 2012, 287, 11338-11350.	1.6	21
63	An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biology, 2012, 13, 418.	13.9	410
64	α-Hemoglobin-stabilizing Protein Is a Sensitive and Specific Marker of Erythroid Precursors. American Journal of Surgical Pathology, 2012, 36, 1538-1547.	2.1	18
65	SLC35D3 delivery from megakaryocyte early endosomes is required for platelet dense granule biogenesis and is differentially defective in Hermansky-Pudlak syndrome models. Blood, 2012, 120, 404-414.	0.6	47
66	Integrated protein quality-control pathways regulate free α-globin in murine β-thalassemia. Blood, 2012, 119, 5265-5275.	0.6	77
67	Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovascular Research, 2012, 94, 379-390.	1.8	124
68	Image segmentation with implicit color standardization using cascaded EM: Detection of myelodysplastic syndromes. , 2012, , .		3
69	Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells. Cell Stem Cell, 2012, 10, 371-384.	5.2	190
70	Insights into Hemoglobin Assembly through in Vivo Mutagenesis of α-Hemoglobin Stabilizing Protein. Journal of Biological Chemistry, 2012, 287, 11325-11337.	1.6	19
71	CD19 is a major B cell receptor–independent activator of MYC-driven B-lymphomagenesis. Journal of Clinical Investigation, 2012, 122, 2257-2266.	3.9	87
72	A new â€~Linc' between noncoding RNAs and blood development: Figure 1 Genes and Development, 2011, 25, 2555-2558.	2.7	41

#	Article	IF	CITATIONS
73	Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Research, 2011, 21, 1659-1671.	2.4	110
74	Identification of Distal <i>cis</i> -Regulatory Elements at Mouse Mitoferrin Loci Using Zebrafish Transgenesis. Molecular and Cellular Biology, 2011, 31, 1344-1356.	1.1	31
75	A Hemoglobin Variant Associated with Neonatal Cyanosis and Anemia. New England Journal of Medicine, 2011, 364, 1837-1843.	13.9	27
76	Getting by with a little help from our friends. Current Opinion in Pediatrics, 2010, 22, 1.	1.0	1
77	MicroRNAs in erythropoiesis. Current Opinion in Hematology, 2010, 17, 1.	1.2	36
78	MicroRNA expression in maturing murine megakaryocytes. Blood, 2010, 116, e128-e138.	0.6	80
79	AHSP (α-haemoglobin-stabilizing protein) stabilizes apo-α-haemoglobin in a partially folded state. Biochemical Journal, 2010, 432, 275-282.	1.7	14
80	Analysis of alpha hemoglobin stabilizing protein overexpression in murine βâ€ŧhalassemia. American Journal of Hematology, 2010, 85, 820-822.	2.0	16
81	miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes and Development, 2010, 24, 1620-1633.	2.7	192
82	The Role of Alpha-Hemoglobin Stabilizing Protein in Redox Chemistry, Denaturation, and Hemoglobin Assembly. Antioxidants and Redox Signaling, 2010, 12, 219-231.	2.5	39
83	NF-E2: a Novel Regulator of Alpha-hemoglobin Stabilizing Protein Gene Expression. Chinese Medical Sciences Journal, 2010, 25, 193-198.	0.2	5
84	Protein Quality Control During Erythropoiesis and Hemoglobin Synthesis. Hematology/Oncology Clinics of North America, 2010, 24, 1071-1088.	0.9	43
85	Nuclear Factors That Regulate Erythropoiesis. , 2009, , 62-85.		3
86	Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Research, 2009, 19, 2172-2184.	2.4	184
87	Mammalian Casein Kinase 1α and Its Leishmanial Ortholog Regulate Stability of IFNAR1 and Type I Interferon Signaling. Molecular and Cellular Biology, 2009, 29, 6401-6412.	1.1	72
88	A cis-Proline in α-Hemoglobin Stabilizing Protein Directs the Structural Reorganization of α-Hemoglobin. Journal of Biological Chemistry, 2009, 284, 29462-29469.	1.6	19
89	LRF Is an Essential Downstream Target of GATA1 in Erythroid Development and Regulates BIM-Dependent Apoptosis. Developmental Cell, 2009, 17, 527-540.	3.1	97
90	Insights into GATA-1-Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis. Molecular Cell, 2009, 36, 682-695.	4.5	278

#	Article	IF	CITATIONS
91	Analysis of human α globin gene mutations that impair binding to the α hemoglobin stabilizing protein. Blood, 2009, 113, 5961-5969.	0.6	39
92	Chaperoning erythropoiesis. Blood, 2009, 113, 2136-2144.	0.6	49
93	Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood, 2009, 114, 983-994.	0.6	89
94	Stem cells unscramble yolk sac hematopoiesis. Blood, 2009, 114, 1455-1456.	0.6	4
95	Population analysis of the alpha hemoglobin stabilizing protein (AHSP) gene identifies sequence variants that alter expression and function. American Journal of Hematology, 2008, 83, 103-108.	2.0	48
96	A GATA-1-regulated microRNA locus essential for erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3333-3338.	3.3	309
97	An Iron Responsive Element-like Stem-Loop Regulates α-Hemoglobin-stabilizing Protein mRNA. Journal of Biological Chemistry, 2008, 283, 26956-26964.	1.6	45
98	Transcriptional enhancement by GATA1-occupied DNA segments is strongly associated with evolutionary constraint on the binding site motif. Genome Research, 2008, 18, 1896-1905.	2.4	29
99	Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood, 2008, 112, 4503-4506.	0.6	117
100	An erythroid chaperone that facilitates folding of α-globin subunits for hemoglobin synthesis. Journal of Clinical Investigation, 2007, 117, 1856-1865.	3.9	96
101	Assembly of recently translated full-length and C-terminal truncated human Î ³ -globin chains with a pool of α-globin chains to form Hb F in a cell-free system. Archives of Biochemistry and Biophysics, 2007, 463, 60-67.	1.4	1
102	Diseased red blood cells topple iron balance. Nature Medicine, 2007, 13, 1020-1021.	15.2	2
103	STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. Journal of Clinical Investigation, 2007, 117, 3890-3899.	3.9	85
104	A Novel Haem-binding Interface in the 22ÂkDa Haem-binding Protein p22HBP. Journal of Molecular Biology, 2006, 362, 287-297.	2.0	8
105	A global role for EKLF in definitive and primitive erythropoiesis. Blood, 2006, 107, 3359-3370.	0.6	182
106	Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1. Blood, 2006, 107, 87-97.	0.6	104
107	Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood, 2006, 107, 1265-1275.	0.6	72
108	alpha-Haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of beta-thalassaemia. British Journal of Haematology, 2006, 133, 675-682.	1.2	79

#	Article	IF	CITATIONS
109	Mitoferrin is essential for erythroid iron assimilation. Nature, 2006, 440, 96-100.	13.7	514
110	Experimental validation of predicted mammalian erythroid cis-regulatory modules. Genome Research, 2006, 16, 1480-1492.	2.4	56
111	Biochemical Fates of α Hemoglobin Bound to α Hemoglobin-stabilizing Protein AHSP. Journal of Biological Chemistry, 2006, 281, 32611-32618.	1.6	37
112	Handling heme. Blood, 2005, 106, 2225-2226.	0.6	1
113	Role of Alpha Hemoglobin-Stabilizing Protein in Normal Erythropoiesis and β-Thalassemia. Annals of the New York Academy of Sciences, 2005, 1054, 103-117.	1.8	41
114	Structure of oxidized α-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature, 2005, 435, 697-701.	13.7	102
115	Repression of c-Kit and Its Downstream Substrates by GATA-1 Inhibits Cell Proliferation during Erythroid Maturation. Molecular and Cellular Biology, 2005, 25, 6747-6759.	1.1	106
116	GATA-1 and Oct-1 Are Required for Expression of the Human α-Hemoglobin-stabilizing Protein Gene. Journal of Biological Chemistry, 2005, 280, 39016-39023.	1.6	34
117	Megakaryocyte biology and related disorders. Journal of Clinical Investigation, 2005, 115, 3332-3338.	3.9	112
118	Proximity among Distant Regulatory Elements at the β-Globin Locus Requires GATA-1 and FOG-1. Molecular Cell, 2005, 17, 453-462.	4.5	449
119	DYRK gene structure and erythroid-restricted features of DYRK3 gene expression. Genomics, 2005, 85, 117-130.	1.3	24
120	Stress-induced Apoptosis Associated with Null Mutation of ADAR1 RNA Editing Deaminase Gene. Journal of Biological Chemistry, 2004, 279, 4952-4961.	1.6	424
121	Molecular Mechanism of AHSP-Mediated Stabilization of α-Hemoglobin. Cell, 2004, 119, 629-640.	13.5	137
122	Global regulation of erythroid gene expression by transcription factor GATA-1. Blood, 2004, 104, 3136-3147.	0.6	372
123	Evaluation of alpha hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients with β thalassemia. Blood, 2004, 103, 3296-3299.	0.6	102
124	Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. Journal of Clinical Investigation, 2004, 114, 1457-1466.	3.9	138
125	GATA-1-Mediated Proliferation Arrest during Erythroid Maturation. Molecular and Cellular Biology, 2003, 23, 5031-5042.	1.1	186
126	GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8811-8816.	3.3	324

#	Article	IF	CITATIONS
127	Formation of a Tissue-Specific Histone Acetylation Pattern by the Hematopoietic Transcription Factor GATA-1. Molecular and Cellular Biology, 2003, 23, 1334-1340.	1.1	130
128	Global Predictions and Tests of Erythroid Regulatory Regions. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 335-344.	2.0	7
129	Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11760-11765.	3.3	113
130	Biophysical Characterization of the α-Globin Binding Protein α-Hemoglobin Stabilizing Protein. Journal of Biological Chemistry, 2002, 277, 40602-40609.	1.6	96
131	An abundant erythroid protein that stabilizes free α-haemoglobin. Nature, 2002, 417, 758-763.	13.7	287
132	Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genetics, 2000, 24, 266-270.	9.4	474
133	ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO Journal, 2000, 19, 2492-2502.	3.5	138
134	Cutting red-cell production. Nature, 1999, 401, 433-435.	13.7	19
135	CREB-Binding Protein Acetylates Hematopoietic Transcription Factor GATA-1 at Functionally Important Sites. Molecular and Cellular Biology, 1999, 19, 3496-3505.	1.1	234
136	Erythroid-Cell-Specific Properties of Transcription Factor GATA-1 Revealed by Phenotypic Rescue of a Gene-Targeted Cell Line. Molecular and Cellular Biology, 1997, 17, 1642-1651.	1.1	315
137	EMBRYONIC STEM CELLS AND HEMATOPOIETIC STEM CELL BIOLOGY. Hematology/Oncology Clinics of North America, 1997, 11, 1185-1198.	0.9	8
138	FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation. Cell, 1997, 90, 109-119.	13.5	685
139	In vitro differentiation of murine embryonic stem cells. New approaches to old problems Journal of Clinical Investigation, 1996, 97, 591-595.	3.9	120
140	Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9623-9627.	3.3	286
141	Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells Genes and Development, 1994, 8, 1184-1197.	2.7	518
142	An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 1994, 371, 221-226.	13.7	1,314
143	Apneic seizures with bradycardia in a newborn. Journal of Epilepsy, 1991, 4, 173-180.	0.4	7
144	First Identification of a Gene Defect for Hypophosphatasia: Evidence That Alkaline Phosphatase Acts in Skeletal Mineralization. Connective Tissue Research, 1989, 21, 99-106.	1.1	25

#	Article	IF	CITATIONS
145	Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1p36.1–p34. Genomics, 1988, 2, 139-143.	1.3	103
146	Probe 8B/ES′ detects a second RFLP at the human liver/bone/kidney alkaline phosphatase (ALPL) locus. Nucleic Acids Research, 1988, 16, 2361-2361.	6.5	19
147	A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7666-7669.	3.3	322
148	A high-frequency RFLP at the human liver/bone/kidney-type alkaline phosphatase locus. Nucleic Acids Research, 1987, 15, 860-860.	6.5	16
149	Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 1234-1238.	3.3	129
150	cDNA cloning of alkaline phosphatase from rat osteosarcoma (ROS 17/2.8) cells. Journal of Bone and Mineral Research, 1987, 2, 161-164.	3.1	99
151	Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5597-5601.	3.3	86
152	Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7182-7186.	3.3	376
153	Closing and sequence analysis of a cDNA plasmid for one of the rat liver glutathione S-transferase subunits. Nucleic Acids Research, 1982, 10, 5407-5419.	6.5	37
154	Subunit composition of rat liver glutathione S-transferases. Biochemical and Biophysical Research Communications, 1982, 108, 461-467.	1.0	26