
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8358483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Unexpected Role of a Trace Amount of Water in Catalyzing Proton Transfer in Phosphine-Catalyzed (3 + 2) Cycloaddition of Allenoates and Alkenes. Journal of the American Chemical Society, 2007, 129, 3470-3471.	13.7	427
2	Mechanism, Regioselectivity, and the Kinetics of Phosphineâ€Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2008, 14, 4361-4373.	3.3	346
3	DFT Study of the Mechanisms of In Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates:  A Proton-Transport Catalysis Strategy in the Water-Catalyzed [1,2]-Hydrogen Shift. Journal of the American Chemical Society, 2007, 129, 15503-15512.	13.7	280
4	Mechanistic Insights into the Gold-Catalyzed Cycloisomerization of Bromoallenyl Ketones: Ligand-Controlled Regioselectivity. Journal of the American Chemical Society, 2008, 130, 6940-6941.	13.7	238
5	Computation-Guided Development of Au-Catalyzed Cycloisomerizations Proceeding via 1,2-Si or 1,2-H Migrations: Regiodivergent Synthesis of Silylfurans. Journal of the American Chemical Society, 2010, 132, 7645-7655.	13.7	222
6	Computational Elucidation of the Internal Oxidant-Controlled Reaction Pathways in Rh(III)-Catalyzed Aromatic C–H Functionalization. Journal of Organic Chemistry, 2012, 77, 3017-3024.	3.2	206
7	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie - International Edition, 2019, 58, 2397-2401.	13.8	178
8	Wacker-Type Oxidation of Alkynes into 1,2-Diketones Using Molecular Oxygen. Organic Letters, 2009, 11, 1841-1844.	4.6	152
9	Iridium(III)-Catalyzed Direct Arylation of C–H Bonds with Diaryliodonium Salts. Journal of the American Chemical Society, 2015, 137, 12231-12240.	13.7	146
10	On the Validity of Au-vinylidenes in the Gold-Catalyzed 1,2-Migratory Cycloisomerization of Skipped Propargylpyridines. Organic Letters, 2010, 12, 5538-5541.	4.6	94
11	Rhodium(III)â€Catalyzed [3+2] Annulation of 5â€Arylâ€2,3â€dihydroâ€1 <i>H</i> â€pyrroles with Internal Alkynes through C(sp ²)H/Alkene Functionalization. Angewandte Chemie - International Edition, 2014, 53, 11338-11341.	13.8	86
12	Rh ^V â€Nitrenoid as a Key Intermediate in Rh ^{III} â€Catalyzed Heterocyclization by CH Activation: A Computational Perspective on the Cycloaddition of Benzamide and Diazo Compounds. Chemistry - A European Journal, 2015, 21, 9209-9218.	3.3	85
13	Mechanistic Understanding of the Aryl-Dependent Ring Formations in Rh(III)-Catalyzed C–H Activation/Cycloaddition of Benzamides and Methylenecyclopropanes by DFT Calculations. Organometallics, 2015, 34, 3012-3020.	2.3	68
14	Nickel atalyzed Kumada Reaction of Tosylalkanes with Grignard Reagents to Produce Alkenes and Modified Arylketones. Angewandte Chemie - International Edition, 2012, 51, 9909-9913.	13.8	67
15	Mechanistic Understanding of the Divergent Reactivity of Cyclopropenes in Rh(III)-Catalyzed C–H Activation/Cycloaddition Reactions of <i>N</i> -Phenoxyacetamide and <i>N</i> -Pivaloxybenzamide. Journal of Organic Chemistry, 2015, 80, 8113-8121.	3.2	67
16	Recent progress in Ru(II)-catalyzed C–H activations with oxidizing directing groups. Chinese Chemical Letters, 2018, 29, 47-53.	9.0	67
17	Lewis Acid Catalyzed Intermolecular Olefin Hydroamination: Scope, Limitation, and Mechanism. European Journal of Organic Chemistry, 2008, 2008, 1929-1936.	2.4	58
18	Mechanisms of the Au- and Pt-Catalyzed Intramolecular Acetylenic Schmidt Reactions: A DFT Study. Journal of Organic Chemistry, 2010, 75, 7842-7854.	3.2	57

#	Article	IF	CITATIONS
19	Nickel/Briphos-Catalyzed Direct Transamidation of Unactivated Secondary Amides Using Trimethylsilyl Chloride. Organic Letters, 2018, 20, 7563-7566.	4.6	55
20	Transamidation for the Synthesis of Primary Amides at Room Temperature. Organic Letters, 2020, 22, 3504-3508.	4.6	54
21	Hydroarylation of Arynes Catalyzed by Silver for Biaryl Synthesis. Journal of the American Chemical Society, 2014, 136, 4363-4368.	13.7	53
22	Mechanism of the Transitionâ€Metalâ€Catalyzed Hydroarylation of Bromoâ€Alkynes Revisited: Hydrogen versus Bromine Migration. Chemistry - A European Journal, 2012, 18, 5401-5415.	3.3	52
23	Efficient synthesis of isoquinolines in water by a Pd-catalyzed tandem reaction of functionalized alkylnitriles with arylboronic acids. Green Chemistry, 2017, 19, 1740-1750.	9.0	52
24	Nickel-catalysed direct alkylation of thiophenes via double C(sp ³)–H/C(sp ²)–H bond cleavage: the importance of KH ₂ PO ₄ . Chemical Communications, 2017, 53, 8316-8319.	4.1	50
25	Rhodium(III)-Catalyzed Redox-Neutral Cascade [3 + 2] Annulation of <i>N</i> -Phenoxyacetamides with Propiolates via C–H Functionalization/Isomerization/Lactonization. Organic Letters, 2018, 20, 7131-7136.	4.6	45
26	Computational Revisit to the β-Carbon Elimination Step in Rh(III)-Catalyzed C–H Activation/Cycloaddition Reactions of <i>N</i> -Phenoxyacetamide and Cyclopropenes. Journal of Organic Chemistry, 2016, 81, 2635-2638.	3.2	40
27	Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex. Journal of Organic Chemistry, 2017, 82, 1340-1346.	3.2	39
28	BiCl ₃ atalyzed Hydroamination of Norbornene with Aromatic Amines. European Journal of Organic Chemistry, 2007, 2007, 4471-4474.	2.4	38
29	Unexpected Role of <i>p</i> -Toluenesulfonylmethyl Isocyanide as a Sulfonylating Agent in Reactions with 1±-Bromocarbonyl Compounds. Journal of Organic Chemistry, 2016, 81, 5504-5512.	3.2	38
30	Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors. Journal of the American Chemical Society, 2020, 142, 9982-9992.	13.7	37
31	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie, 2019, 131, 2419-2423.	2.0	34
32	Formal hydrogenation of arynes with silyl C _β –H bonds as an active hydride source. Chemical Science, 2014, 5, 2362-2367.	7.4	33
33	Catalyst-Controlled C–C σ Bond Cleavages in Metal Halide-Catalyzed Cycloisomerization of 3-Acylcyclopropenes via a Formal 1,1-Halometalation Mechanism: Insights from Quantum Chemical Calculations. ACS Catalysis, 2015, 5, 859-868.	11.2	33
34	Palladium-Catalyzed Cascade Reaction of o-Cyanobiaryls with Arylboronic Acids: Synthesis of 5-Arylidene-7-aryl-5H-dibenzo[c,e]azepines. Organic Letters, 2019, 21, 7697-7701.	4.6	33
35	Mechanisms of the PtCl2-Catalyzed Intramolecular Cyclization of o-Isopropyl-Substituted Aryl Alkynes for the Synthesis of Indenes and Comparison of Three sp3 C–H Bond Activation Modes. Journal of Organic Chemistry, 2014, 79, 5684-5696.	3.2	31
36	Noninnocent Counterion Effect on the Rearrangements of Cationic Intermediates in a Gold(I)-Catalyzed Alkenylsilylation Reaction. Organic Letters, 2013, 15, 6074-6077.	4.6	30

YUANZHI XIA

#	Article	IF	CITATIONS
37	Benzannulation of Triynes to Generate Functionalized Arenes by Spontaneous Incorporation of Nucleophiles. Angewandte Chemie - International Edition, 2015, 54, 6582-6586.	13.8	30
38	Direct synthesis of 3-acylbenzothiophenes <i>via</i> the radical cyclization of 2-alkynylthioanisoles with α-oxocarboxylic acids. Chemical Communications, 2018, 54, 14148-14151.	4.1	30
39	A modular biomimetic strategy for the synthesis of macrolide P-glycoprotein inhibitors via Rh-catalyzed C-H activation. Nature Communications, 2020, 11, 2151.	12.8	29
40	Reactivity of Arynes for Arene Dearomatization. Organic Letters, 2018, 20, 4168-4172.	4.6	28
41	Synthesis of Phenolic Compounds by Trapping Arynes with a Hydroxy Surrogate. Molecules, 2015, 20, 15862-15880.	3.8	27
42	Alder-ene reactions driven by high steric strain and bond angle distortion to form benzocyclobutenes. Chemical Science, 2019, 10, 2212-2217.	7.4	27
43	Nickel-Catalyzed Claisen Condensation Reaction between Two Different Amides. Organic Letters, 2020, 22, 2287-2292.	4.6	26
44	Tetranuclear nickel(II) complex with tripodal hydroxyl ligand functionalized by additional salicylaldehyde donor pendant: Synthesis, crystal structure and magnetic property. Inorganic Chemistry Communication, 2008, 11, 73-76.	3.9	25
45	Modular Chiral Bisoxalamide–Copper-Catalyzed Asymmetric Oxo-Diels–Alder Reaction: Carbonyl Coordination for High Enantio- and Diastereocontrols. ACS Catalysis, 2020, 10, 3556-3563.	11.2	25
46	Subtle Electronic Effects in Metal-Free Rearrangement of Allenic Alcohols. Organic Letters, 2013, 15, 1552-1555.	4.6	24
47	Mechanism of the N-protecting group dependent annulations of 3-aryloxy alkynyl indoles under gold catalysis: a computational study. Organic and Biomolecular Chemistry, 2012, 10, 4417.	2.8	23
48	Reactivity of arynes toward functionalized alkenes: intermolecular Alder-ene vs. addition reactions. Organic Chemistry Frontiers, 2018, 5, 2208-2213.	4.5	23
49	Direct C–S bond formation <i>via</i> C–O bond activation of phenols in a crossover Pd/Cu dual-metal catalysis system. Organic and Biomolecular Chemistry, 2019, 17, 4491-4497.	2.8	23
50	Rapid Access to Substituted Piperazines via Ti(NMe2)4-Mediated C–C Bond-Making Reactions. Organometallics, 2012, 31, 6005-6013.	2.3	22
51	Regioselective addition of C(sp ³)–H bonds of alkyl pyridines to olefins catalysed by cationic zirconium complexes. Chemical Communications, 2017, 53, 7401-7404.	4.1	22
52	Silver-Catalyzed Annulation of Arynes with Nitriles for Synthesis of Structurally Diverse Quinazolines. Organic Letters, 2020, 22, 626-630.	4.6	22
53	Synthesis of Sulfimides and <i>N-</i> Allyl- <i>N-</i> (thio)amides by Ru(II)-Catalyzed Nitrene Transfer Reactions of <i>N-</i> Acyloxyamides. Organic Letters, 2021, 23, 819-825.	4.6	22
54	Complementary Iron(II) atalyzed Oxidative Transformations of Allenes with Different Oxidants. Angewandte Chemie - International Edition, 2016, 55, 1151-1155.	13.8	21

#	Article	IF	CITATIONS
55	Reactivity and Selectivity in the Intermolecular Alder–Ene Reactions of Arynes with Functionalized Alkenes. Organic Letters, 2017, 19, 5162-5165.	4.6	21
56	Coupling of amides with ketones <i>via</i> C–N/C–H bond cleavage: a mild synthesis of 1,3-diketones. Organic Chemistry Frontiers, 2020, 7, 2931-2937.	4.5	21
57	A Unified Catalytic Asymmetric (4+1) and (5+1) Annulation Strategy to Access Chiral Spirooxindoleâ€Fused Oxacycles. Angewandte Chemie - International Edition, 2021, 60, 19813-19820.	13.8	21
58	Palladiumâ€Catalyzed Selective Synthesis of Dibenzo[c , e]azepinâ€5â€ols and Benzo[c]pyrido[2,3―e]azepinâ€5â€ols. Advanced Synthesis and Catalysis, 2019, 361, 4707-4713.	4.3	19
59	Consecutive Lossen rearrangement/transamidation reaction of hydroxamic acids under catalyst- and additive-free conditions. Organic and Biomolecular Chemistry, 2018, 16, 3615-3624.	2.8	18
60	Cobalt-Catalyzed <i>Z</i> to <i>E</i> lsomerization of Alkenes: An Approach to (<i>E</i>)-β-Substituted Styrenes. Organic Letters, 2020, 22, 1193-1198.	4.6	18
61	Theoretical Studies on the Mechanism of the C–H Amination of Silyl Cyclopropenes by Azodicarboxylates. Journal of Organic Chemistry, 2013, 78, 988-995.	3.2	17
62	Cobalt-Catalyzed Reductive C–O Bond Cleavage of Lignin β-O-4 Ketone Models via In Situ Generation of the Cobalt–Boryl Species. Organic Letters, 2020, 22, 6055-6060.	4.6	17
63	Substrate-Dependent Mechanisms for the Gold(I)-Catalyzed Cycloisomerization of Silyl-Tethered Enynes: A Computational Study. Organometallics, 2014, 33, 4230-4239.	2.3	16
64	Benzannulation of Triynes Initiated by an Alder-Ene Reaction and Subsequent Trifluoromethylthiolate Addition. Organic Letters, 2016, 18, 3530-3533.	4.6	16
65	Cobalt-Catalyzed <i>E</i> -Selective Isomerization of Alkenes with a Phosphine-Amido-Oxazoline Ligand. ACS Omega, 2020, 5, 11655-11670.	3.5	16
66	Amide/Ester Cross-Coupling via C–N/C–H Bond Cleavage: Synthesis of β-Ketoesters. Journal of Organic Chemistry, 2021, 86, 5943-5953.	3.2	16
67	Facile Alderâ€Ene Reactions of Silylallenes Involving an Allenic C(sp ²)H Bond. Chemistry - A European Journal, 2015, 21, 17210-17214.	3.3	15
68	Copper-catalyzed aminothiolation of terminal alkynes with tunable regioselectivity. Chemical Communications, 2019, 55, 1813-1816.	4.1	15
69	Ni/Cu-Catalyzed Decarboxylative Addition of Alkynoic Acids to Terminal Alkynes for the Synthesis of <i>gem</i> -1,3-Enynes. Organic Letters, 2019, 21, 5426-5431.	4.6	14
70	A one-pot protocol for the synthesis of β-ketosulfones from α,α-dibromoketones. Organic Chemistry Frontiers, 2019, 6, 2647-2653.	4.5	14
71	Facile access to 1,3-diketones by gold(i)-catalyzed regioselective hydration of ynones. Organic and Biomolecular Chemistry, 2019, 17, 3940-3944.	2.8	14
72	Reactivity of Alkynyl Metal Carbenoids: DFT Study on the Pt-Catalyzed Cyclopropanation of Propargyl Ester Containing 1,3-Diynes. Organic Letters, 2012, 14, 3850-3853.	4.6	12

#	Article	IF	CITATIONS
73	Silver-Catalyzed Selective Multicomponent Coupling Reactions of Arynes with Nitriles and Isonitriles. Organic Letters, 2020, 22, 642-647.	4.6	12
74	Construction of <i>N</i> -Acyliminophosphoranes via Iron(II)-Catalyzed Imidization of Phosphines with <i>N</i> -Acyloxyamides. Organic Letters, 2022, 24, 3302-3306.	4.6	11
75	Mechanistic Understanding of the Divergent Cyclizations of <i>o</i> â€Alkynylbenzaldehyde Acetals and Thioacetals Catalyzed by Metal Halides. Chemistry - A European Journal, 2015, 21, 17256-17268.	3.3	10
76	Multiple pathways for C–H cleavage in cationic Cp*Rh(<scp>iii</scp>)-catalyzed C–H activation without carboxylate assistance: a computational study. Catalysis Science and Technology, 2018, 8, 4005-4009.	4.1	10
77	Theoretical study on the consecutive 1,2-hydroboration and 1,1-organoboration reactions of alkyn-1-yl(vinyl)silane with borane. Journal of Organometallic Chemistry, 2008, 693, 3722-3728.	1.8	9
78	Substituent effects on the tautomerism of monochalcogenocarboxylic acids XC(O)YH (X=H, F, NH2,) Tj ETQqO (896, 80-84.	0 0 rgBT /0 1.5	Overlock 10 Ti 9
79	Formal C–H amination of cyclopropenes. Chemical Communications, 2012, 48, 10990.	4.1	9
80	Mechanistic DFT Study on Rhodium(III)â€Catalyzed Double Câ^'H Activation for Oxidative Annulations of 2â€Substituted Imidazoles and Alkynes. Asian Journal of Organic Chemistry, 2018, 7, 586-591.	2.7	9
81	Ruthenium(<scp>ii</scp>)-catalyzed reductive N–O bond cleavage of <i>N</i> -OR (R = H, alkyl, or acyl) substituted amides and sulfonamides. Organic Chemistry Frontiers, 2021, 8, 112-119.	4.5	9
82	Effect of electron-withdrawing group on the [3,3]-sigmatropic rearrangements of 1,5-enynes, 1,5-diynes and 1,2-diene-5-ynes: A theoretical study. Computational and Theoretical Chemistry, 2009, 904, 69-73.	1.5	8
83	Cyclization of Ynamideâ€Tethered 1,3,8â€Triynes. Chemistry - A European Journal, 2017, 23, 8161-8165.	3.3	8
84	C–H Insertion by Alkylidene Carbenes To Form 1,2,3-Triazines and Anionic [3 + 2] Dipolar Cycloadditions To Form Tetrazoles: Crucial Roles of Stereoelectronic and Steric Effects. Organic Letters, 2020, 22, 718-723.	4.6	8
85	THF Solvent as a Proton Shuttle in the AuCl3-Catalyzed Cycloisomerization of a Bromoallenyl Ketone: A Mechanistic DFT Study. Synthesis, 2014, 46, 2149-2154.	2.3	7
86	Reaction of silylallenes with triplet molecular oxygen. Organic Chemistry Frontiers, 2018, 5, 2542-2546.	4.5	7
87	Nucleophilic Addition and α-C–H Substitution Reactions of an Imine Mediated by Dibutylmagnesium and Organolithium Reagents. Organometallics, 2021, 40, 1830-1837.	2.3	5
88	Cobalt-Catalyzed <i>Z</i> to <i>E</i> Geometrical Isomerization of 1,3-Dienes. Journal of Organic Chemistry, 2022, 87, 4712-4723.	3.2	5
89	The mechanism of the gold-catalyzed intramolecular [3 + 2]-cycloaddition of 1,6-diynes: a DFT study. Dalton Transactions, 2019, 48, 5698-5704.	3.3	4
90	Complementary Iron(II) atalyzed Oxidative Transformations of Allenes with Different Oxidants. Angewandte Chemie, 2016, 128, 1163-1167.	2.0	3

#	Article	IF	CITATIONS
91	Ruthenium(II)-Catalyzed Homocoupling of α-Carbonyl Sulfoxonium Ylides Under Mild Conditions: Methodology Development and Mechanistic DFT Study. Frontiers in Chemistry, 2020, 8, 648.	3.6	3
92	Lithium and magnesium complexes by using pyridyl-pendanted unsymmetrical β-diketiminates: syntheses and application as catalysts for the hydroboration of carbonyl compounds. Dalton Transactions, 2022, , .	3.3	3
93	Three-component coupling reaction for the synthesis of fully substituted triazoles: reactivity control of Cu-acetylide toward alkyl azides and diazo compounds. Organic Chemistry Frontiers, 2021, 8, 6095-6107.	4.5	2
94	Mechanistic Understanding of the Divergent Cyclizations ofo-Alkynylbenzaldehyde Acetals and Thioacetals Catalyzed by Metal Halides. Chemistry - A European Journal, 2015, 21, 17137-17137.	3.3	0
95	DFT Studies on the Stereoselectivity of α-Silyloxy Diazoalkane Cycloadditions. Molecules, 2015, 20, 21433-21441.	3.8	0
96	Synthesis of Titanium Complexes Supported by Carbinolamide- and Amide-Containing Ligands Derived from Ti(NMe2)4-Mediated Selective Amidations of Carbonyl Groups. Inorganic Chemistry, 2020, 59, 14031-14041.	4.0	0
97	One-Pot Synthesis of (Z)-β-Halovinyl Ketones via the Cascade of Sonogashira Coupling and Hydrohalogenation. Frontiers in Chemistry, 2020, 8, 621545.	3.6	0
98	Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones. Chinese Journal of Organic Chemistry, 2021, 41, 3272.	1.3	0
99	Visible-Light-Induced Iron Catalysis for Nitrene Transfer Reactions with Dioxazolones. Chinese Journal of Organic Chemistry, 2021, 41, 3748.	1.3	0