List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8357275/publications.pdf Version: 2024-02-01

FOWARD N RAKER

#	Article	IF	CITATIONS
1	Hydrogen bonding in globular proteins. Progress in Biophysics and Molecular Biology, 1984, 44, 97-179.	2.9	1,636
2	Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2·8 Ã resolution. Journal of Molecular Biology, 1989, 209, 711-734.	4.2	577
3	Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature, 1969, 224, 491-495.	27.8	532
4	Structural Basis of the Tanford Transition of Bovine β-Lactoglobulinâ€,‡. Biochemistry, 1998, 37, 14014-14023.	2.5	461
5	Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease. Cellular and Molecular Life Sciences, 2009, 66, 613-635.	5.4	425
6	Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature, 1990, 344, 784-787.	27.8	398
7	Structure of azurin from Alcaligenes denitrificans refinement at 1·8 à resolution and comparison of the two crystallographically independent molecules. Journal of Molecular Biology, 1988, 203, 1071-1095.	4.2	395
8	Three-dimensional structure of diferric bovine lactoferrin at 2.8 Ã resolution. Journal of Molecular Biology, 1997, 274, 222-236.	4.2	361
9	Lactoferrin. Cellular and Molecular Life Sciences, 2005, 62, 2531-2539.	5.4	320
10	Stabilizing Isopeptide Bonds Revealed in Gram-Positive Bacterial Pilus Structure. Science, 2007, 318, 1625-1628.	12.6	295
11	Thiol proteases. Journal of Molecular Biology, 1985, 182, 317-329.	4.2	291
12	Lactoferrin Is a Potent Regulator of Bone Cell Activity and Increases Bone Formation in Vivo. Endocrinology, 2004, 145, 4366-4374.	2.8	253
13	Two High-Resolution Crystal Structures of the Recombinant N-Lobe of Human Transferrin Reveal a Structural Change Implicated in Iron Releaseâ€,‡. Biochemistry, 1998, 37, 7919-7928.	2.5	242
14	Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nature Structural Biology, 2000, 7, 196-199.	9.7	227
15	A structural framework for understanding the multifunctional character of lactoferrin. Biochimie, 2009, 91, 3-10.	2.6	225
16	Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two beta-propeller domains. Nature Structural Biology, 1999, 6, 926-931.	9.7	219
17	Dealing with iron: Common structural principles in proteins that transport iron and heme. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3579-3583.	7.1	216
18	Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure, 1998, 6, 1541-1551.	3.3	200

#	Article	IF	CITATIONS
19	New perspectives on the structure and function of transferrins. Journal of Inorganic Biochemistry, 1992, 47, 147-160.	3.5	199
20	Transferrins: insights into structure and function from studies on lactoferrin. Trends in Biochemical Sciences, 1987, 12, 350-353.	7.5	185
21	Ligand-Induced Conformational Change in Transferrins:Â Crystal Structure of the Open Form of the N-Terminal Half-Molecule of Human Transferrinâ€,‡. Biochemistry, 1998, 37, 13978-13986.	2.5	183
22	Lactoferrin and Iron: structural and dynamic aspects of binding and release. BioMetals, 2004, 17, 209-216.	4.1	183
23	Structure and Reactivity of Transferrins. Advances in Inorganic Chemistry, 1994, 41, 389-463.	1.0	182
24	Lactoferrin and transferrin: Functional variations on a common structural framework. Biochemistry and Cell Biology, 2002, 80, 27-34.	2.0	165
25	Domain Closure in Lactoferrin. Journal of Molecular Biology, 1993, 234, 357-372.	4.2	160
26	Blue copper proteins. The copper site in azurin from Alcaligenes denitrificans. Journal of the American Chemical Society, 1986, 108, 2784-2785.	13.7	153
27	Structure of azurin from Alcaligenes denitrificans at 2·5 à resolution. Journal of Molecular Biology, 1983, 165, 501-521.	4.2	147
28	Superantigens – powerful modifiers of the immune system. Trends in Molecular Medicine, 2000, 6, 125-132.	2.6	147
29	Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure, 1999, 7, 435-448.	3.3	145
30	Crystal structure of Escherichia coli manganese superoxide dismutase at 2.1-Ã resolution. Journal of Biological Inorganic Chemistry, 1998, 3, 161-171.	2.6	131
31	Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8295-8300.	7.1	129
32	Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 å resolution. Journal of Molecular Biology, 1999, 294, 1027-1040.	4.2	122
33	Functional implications of structural differences between variants A and B of bovine Î²â€łactoglobulin. Protein Science, 1999, 8, 75-83.	7.6	122
34	12-Bromododecanoic acid binds inside the calyx of bovine Î ² -lactoglobulin. FEBS Letters, 1998, 438, 272-278.	2.8	117
35	Intramolecular isopeptide bonds: protein crosslinks built for stress?. Trends in Biochemical Sciences, 2011, 36, 229-237.	7.5	112
36	Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12641-12646.	7.1	111

#	Article	IF	CITATIONS
37	Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis. PLoS ONE, 2010, 5, e15803.	2.5	110
38	The <i>Corynebacterium diphtheriae</i> shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16967-16971.	7.1	107
39	Crystal structure of the streptococcal superantigen SPE-C: dimerization and zinc binding suggest a novel mode of interaction with MHC class II molecules. Nature Structural Biology, 1997, 4, 635-643.	9.7	104
40	Distant Structural Homology Leads to the Functional Characterization of an Archaeal PIN Domain as an Exonuclease. Journal of Biological Chemistry, 2004, 279, 16471-16478.	3.4	103
41	Structure of the bacterial type <scp>II NADH</scp> dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Molecular Microbiology, 2014, 91, 950-964.	2.5	103
42	1.8 å crystal structure of the C-terminal domain of rabbit serum haemopexin. Structure, 1995, 3, 551-559.	3.3	100
43	Aminoglycoside Antibiotic Resistance by Enzymatic Deactivation. Current Drug Targets Infectious Disorders, 2002, 2, 143-160.	2.1	98
44	The Crystal Structure of Aminoglycoside-3â€2-Phosphotransferase-IIa, an Enzyme Responsible for Antibiotic Resistance. Journal of Molecular Biology, 2003, 327, 491-506.	4.2	98
45	Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: An integrin-binding cysteine protease. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2235-2240.	7.1	96
46	The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis, 2003, 83, 223-249.	1.9	95
47	Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Molecular Microbiology, 2003, 47, 607-617.	2.5	95
48	The characterization of both the coordinated and non-coordinated saccharinate ion. The syntheses and crystal structures of aqua(2-formylpyridine thiosemicarbazonato)(saccharinato-N)copper(II) hemihydrate and 2,2â€2-bipyridyl-(2-formylpyridine thiosemicarbazonato)copper(II) saccharinate dihydrate. Inorganica Chimica Acta. 1990. 172. 185-190.	2.4	93
49	The Structure of Mbtl from Mycobacterium tuberculosis , the First Enzyme in the Biosynthesis of the Siderophore Mycobactin, Reveals It To Be a Salicylate Synthase. Journal of Bacteriology, 2006, 188, 6081-6091.	2.2	93
50	Intramolecular Isopeptide Bonds Give Thermodynamic and Proteolytic Stability to the Major Pilin Protein of Streptococcus pyogenes. Journal of Biological Chemistry, 2009, 284, 20729-20737.	3.4	93
51	A structural perspective on lactoferrin function ¹ This article is part of a Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2012, 90, 320-328.	2.0	93
52	Structure of human diferric lactoferrin refined at 2.2 Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 629-646.	2.5	92
53	Structure and Inhibition of the Human Cell Cycle Checkpoint Kinase, Wee1A Kinase. Structure, 2005, 13, 541-550.	3.3	91
54	Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15032-15037.	7.1	91

#	Article	IF	CITATIONS
55	Spectrochemical studies on the blue copper protein azurin from Alcaligenes denitrificans. Biochemistry, 1987, 26, 71-82.	2.5	90
56	The structure of glucose-fructose oxidoreductase from Zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Structure, 1996, 4, 1413-1428.	3.3	87
57	Human melanotransferrin (p97) has only one functional iron-binding site. FEBS Letters, 1992, 298, 215-218.	2.8	86
58	Metal substitution in transferrins: the crystal structure of human copper-lactoferrin at 2.1ANG. resolution. Biochemistry, 1992, 31, 4527-4533.	2.5	85
59	The crystal structure of staphylococcal superantigenâ€like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Molecular Microbiology, 2007, 66, 1342-1355.	2.5	85
60	Structure of the Recombinant N-Terminal Lobe of Human Lactoferrin at 2·O à Resolution. Journal of Molecular Biology, 1993, 232, 1084-1100.	4.2	83
61	Crystal Structures of F420-dependent Glucose-6-phosphate Dehydrogenase FGD1 Involved in the Activation of the Anti-tuberculosis Drug Candidate PA-824 Reveal the Basis of Coenzyme and Substrate Binding. Journal of Biological Chemistry, 2008, 283, 17531-17541.	3.4	79
62	The Three-dimensional Structure of a Superantigen-like Protein, SET3, from a Pathogenicity Island of the Staphylococcus aureus Genome. Journal of Biological Chemistry, 2002, 277, 32274-32281.	3.4	77
63	Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys Peroxiredoxin. Journal of Molecular Biology, 2005, 346, 1035-1046.	4.2	77
64	Structure, function and flexibility of human lactoferrin. International Journal of Biological Macromolecules, 1991, 13, 122-129.	7.5	76
65	Crystal structure of the NADP(H)-dependent ketose reductase from Bemisia argentifolii at 2.3 Ã resolution11Edited by R. Huber. Journal of Molecular Biology, 2001, 306, 239-250.	4.2	76
66	Outer Sphere Mutations Perturb Metal Reactivity in Manganese Superoxide Dismutase,. Biochemistry, 2001, 40, 15-27.	2.5	75
67	The Structure of 3-Deoxy-d-arabino-heptulosonate 7-phosphate Synthase from Mycobacterium tuberculosis Reveals a Common Catalytic Scaffold and Ancestry for Type I and Type II Enzymes. Journal of Molecular Biology, 2005, 354, 927-939.	4.2	74
68	Three-Dimensional Structure of Lactoferrin in Various Functional States. Advances in Experimental Medicine and Biology, 1994, 357, 1-12.	1.6	74
69	Structural homologies with ATP- and folate-binding enzymes in the crystal structure of folylpolyglutamate synthetase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6647-6652.	7.1	73
70	Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Current Opinion in Structural Biology, 2012, 22, 200-207.	5.7	72
71	Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 299, 157-168.	4.2	69
72	Histidine phosphorylation in biological systems. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 100-105.	2.3	68

#	Article	IF	CITATIONS
73	Anion binding by human lactoferrin: results from crystallographic and physicochemical studies. Biochemistry, 1992, 31, 4451-4458.	2.5	67
74	A flexible and economical medium-throughput strategy for protein production and crystallization. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1378-1385.	2.5	67
75	The TB Structural Genomics Consortium: Providing a Structural Foundation for Drug Discovery. Current Drug Targets Infectious Disorders, 2002, 2, 121-141.	2.1	66
76	Crystal Structure of Methylmalonyl-Coenzyme A Epimerase from P. shermanii. Structure, 2001, 9, 637-646.	3.3	64
77	Structure of actinidin: Details of the polypeptide chain conformation and active site from an electron density map at 2·8 à resolution. Journal of Molecular Biology, 1977, 115, 263-277.	4.2	63
78	Crystal Structure of MshB from Mycobacterium tuberculosis , a Deacetylase Involved in Mycothiol Biosynthesis. Journal of Molecular Biology, 2004, 335, 1131-1141.	4.2	63
79	Synergistic Allostery, a Sophisticated Regulatory Network for the Control of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2010, 285, 30567-30576.	3.4	63
80	Altered Domain Closure and Iron Binding in Transferrins: The Crystal Structure of the Asp60Ser Mutant of the Amino-terminal Half-molecule of Human Lactoferrin. Journal of Molecular Biology, 1996, 256, 352-363.	4.2	62
81	Crystal Structures of the Staphylococcal Toxin SSL5 in Complex with Sialyl Lewis X Reveal a Conserved Binding Site that Shares Common Features with Viral and Bacterial Sialic Acid Binding Proteins. Journal of Molecular Biology, 2007, 374, 1298-1308.	4.2	62
82	Structure of Human Apolactoferrin at 2.0â€Ã Resolution. Refinement and Analysis of Ligand-Induced Conformational Change. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1319-1335.	2.5	61
83	Crystal Structure of the Minor Pilin FctB Reveals Determinants of Group A Streptococcal Pilus Anchoring. Journal of Biological Chemistry, 2010, 285, 20381-20389.	3.4	61
84	Distinct Metal Environment in Fe-Substituted Manganese Superoxide Dismutase Provides a Structural Basis of Metal Specificity. Journal of the American Chemical Society, 1998, 120, 9684-9685.	13.7	60
85	Structure of recombinant human lactoferrin expressed in Aspergillus awamori. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 403-407.	2.5	60
86	Chelation of nickel(II) by citrate. The crystal structure of a nickel–citrate complex, K2[Ni(C6H5O7)(H2O)2]2·4H2O. Inorganica Chimica Acta, 1983, 78, 281-285.	2.4	58
87	High-Resolution Crystal Structure of Plant Carboxylesterase AeCXE1, from Actinidia eriantha, and Its Complex with a High-Affinity Inhibitor Paraoxon,. Biochemistry, 2007, 46, 1851-1859.	2.5	58
88	The Laminin-Binding Protein Lbp from Streptococcus pyogenes Is a Zinc Receptor. Journal of Bacteriology, 2009, 191, 5814-5823.	2.2	56
89	Production of recombinant proteins in <i>Mycobacterium smegmatis</i> for structural and functional studies. Protein Science, 2015, 24, 1-10.	7.6	56
90	Folate-binding triggers the activation of folylpolyglutamate synthetase 1 1Edited by I. Wilson. Journal of Molecular Biology, 2001, 310, 1067-1078.	4.2	55

6

#	Article	IF	CITATIONS
91	A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nature Communications, 2019, 10, 1558.	12.8	55
92	Structure and function of GlmU from <i>Mycobacterium tuberculosis</i> . Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 275-283.	2.5	54
93	Crystal Structure and Metal Binding Properties of the Lipoprotein MtsA, Responsible for Iron Transport in <i>Streptococcus pyogenes</i> . Biochemistry, 2009, 48, 6184-6190.	2.5	54
94	Mutagenesis of the Histidine Ligand in Human Lactoferrin:  Iron Binding Properties and Crystal Structure of the Histidine-253 → Methionine Mutant,. Biochemistry, 1997, 36, 341-346.	2.5	52
95	The Crystal Structures of Substrate and Nucleotide Complexes of <i>Enterococcus faecium</i> Aminoglycoside-2′′-Phosphotransferase-lla [APH(2′′)-lla] Provide Insights into Substrate Selectivity in t APH(2′′) Subfamily. Journal of Bacteriology, 2009, 191, 4133-4143.	hæ.2	50
96	Inhibition Studies of <i>Mycobacterium tuberculosis</i> Salicylate Synthase (Mbtl). ChemMedChem, 2010, 5, 1067-1079.	3.2	50
97	Anion Binding by Transferrins:  Importance of Second-Shell Effects Revealed by the Crystal Structure of Oxalate-Substituted Diferric Lactoferrin,. Biochemistry, 1996, 35, 9007-9013.	2.5	49
98	Immunological and Biochemical Characterization of Streptococcal Pyrogenic Exotoxins I and J (SPE-I) Tj ETQq0 0 0	rgBT /Ov	erlock 10 Tf 48
99	Roles of Minor Pilin Subunits Spy0125 and Spy0130 in the Serotype M1 <i>Streptococcus pyogenes</i> Strain SF370. Journal of Bacteriology, 2010, 192, 4651-4659.	2.2	48
100	Crystal structure of PAE0151 from <i>Pyrobaculum aerophilum</i> , a PINâ€domain (VapC) protein from a toxinâ€antitoxin operon. Proteins: Structure, Function and Bioinformatics, 2008, 72, 510-518.	2.6	45
101	Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angewandte Chemie - International Edition, 2016, 55, 7930-7933.	13.8	45
102	Metal substitution in transferrins: specific binding of cerium(IV) revealed by the crystal structure of cerium-substituted human lactoferrin. Journal of Biological Inorganic Chemistry, 2000, 5, 692-698.	2.6	44
103	A new Gateway \hat{A}^{\oplus} vector and expression protocol for fast and efficient recombinant protein expression in Mycobacterium smegmatis. Protein Expression and Purification, 2008, 57, 81-87.	1.3	44
104	Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly. PLoS ONE, 2011, 6, e15969.	2.5	44
105	Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine, 2014, 32, 3713-3720.	3.8	44
106	The three-dimensional structure of PNGase F, a glycosyl asparaginase from Flavobacterium meningosepticum. Structure, 1994, 2, 1049-1059.	3.3	43
107	A functional role of Rv1738 in <i>Mycobacterium tuberculosis</i> persistence suggested by racemic protein crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4310-4315.	7.1	43

The Crystal Structure of Rv1347c, a Putative Antibiotic Resistance Protein from Mycobacterium108tuberculosis, Reveals a GCN5-related Fold and Suggests an Alternative Function in Siderophore3.442Biosynthesis. Journal of Biological Chemistry, 2005, 280, 13978-13986.42

#	Article	IF	CITATIONS
109	The potential impact of structural genomics on tuberculosis drug discovery. Drug Discovery Today, 2006, 11, 28-34.	6.4	42
110	Removing a Hydrogen Bond in the Dimer Interface ofEscherichia coliManganese Superoxide Dismutase Alters Structure and Reactivityâ€,‡. Biochemistry, 2001, 40, 4622-4632.	2.5	41
111	The Crystal Structure of TrpD, a Metabolic Enzyme Essential for Lung Colonization by Mycobacterium tuberculosis, in Complex with its Substrate Phosphoribosylpyrophosphate. Journal of Molecular Biology, 2006, 355, 784-797.	4.2	41
112	Structural Model for Covalent Adhesion of the Streptococcus pyogenes Pilus through a Thioester Bond. Journal of Biological Chemistry, 2014, 289, 177-189.	3.4	41
113	Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 2000, 302, 425-438.	4.2	40
114	Crystal Structures of the Precursor Form of Glucose-Fructose Oxidoreductase from Zymomonas mobilis and Its Complexes with Bound Ligands,. Biochemistry, 2001, 40, 13857-13867.	2.5	40
115	Crystal Structure of Epiphyas postvittana Takeout 1 with Bound Ubiquinone Supports a Role as Ligand Carriers for Takeout Proteins in Insects. Journal of Biological Chemistry, 2009, 284, 3496-3503.	3.4	40
116	Structure of XynB, a highly thermostable β-1,4-xylanase fromDictyoglomus thermophilumRt46B.1, at 1.8â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1367-1375.	2.5	39
117	Structural and Functional Characterization of an RNase HI Domain from the Bifunctional Protein Rv2228c from <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2010, 192, 2878-2886.	2.2	39
118	The TB Structural Genomics Consortium: A decade of progress. Tuberculosis, 2011, 91, 155-172.	1.9	39
119	Mutation of the Iron Ligand His 249 to Glu in the N-Lobe of Human Transferrin Abolishes the Dilysine "Trigger―but Does Not Significantly Affect Iron Releaseâ€,‡. Biochemistry, 2000, 39, 1211-1216.	2.5	38
120	Expression, purification and crystallization of native and selenomethionine labeled Mycobacterium tuberculosis FGD1 (Rv0407) using a Mycobacterium smegmatis expression system. Protein Expression and Purification, 2007, 54, 38-44.	1.3	38
121	Three Sites and You Are Out: Ternary Synergistic Allostery Controls Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis. Journal of Molecular Biology, 2013, 425, 1582-1592.	4.2	38
122	Crystal Structures and Iron Release Properties of Mutants (K206A and K296A) That Abolish the Dilysine Interaction in the N-Lobe of Human Transferrinâ€,‡. Biochemistry, 2001, 40, 1616-1623.	2.5	37
123	Potent Inhibitors of a Shikimate Pathway Enzyme from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2011, 286, 16197-16207.	3.4	37
124	Defining the Potassium Binding Region in an Apple Terpene Synthase. Journal of Biological Chemistry, 2009, 284, 8661-8669.	3.4	36
125	Crystal Structure and Iron-Binding Properties of the R210K Mutant of the N-Lobe of Human Lactoferrin: Implications for Iron Release from Transferrinsâ€,‡. Biochemistry, 2000, 39, 6625-6633.	2.5	35
126	Mutation of Arginine 121 in Lactoferrin Destabilizes Iron Binding by Disruption of Anion Binding:Â Crystal Structures of R121S and R121E Mutantsâ€,‡. Biochemistry, 1996, 35, 14473-14479.	2.5	34

#	Article	IF	CITATIONS
127	Three-Dimensional Structure of Lactoferrin. Advances in Experimental Medicine and Biology, 1998, , 1-14.	1.6	34
128	Structure of the Full-Length Major Pilin from Streptococcus pneumoniae: Implications for Isopeptide Bond Formation in Gram-Positive Bacterial Pili. PLoS ONE, 2011, 6, e22095.	2.5	33
129	Structural and Functional Properties of Staphylococcal Superantigen-Like Protein 4. Infection and Immunity, 2012, 80, 4004-4013.	2.2	33
130	Ligand Variation in the Transferrin Family:Â The Crystal Structure of the H249Q Mutant of the Human Transferrin N-lobe As a Model for Iron Binding in Insect Transferrinsâ€,‡. Biochemistry, 2001, 40, 11670-11675.	2.5	32
131	Structural Conservation, Variability, and Immunogenicity of the T6 Backbone Pilin of Serotype M6 Streptococcus pyogenes. Infection and Immunity, 2014, 82, 2949-2957.	2.2	32
132	The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7256-7266.	3.4	32
133	The Structure of Truncated Recombinant Human Bile Salt-stimulated Lipase Reveals Bile Salt-independent Conformational Flexibility at the Active-site Loop and Provides Insights into Heparin Binding. Journal of Molecular Biology, 2001, 312, 511-523.	4.2	31
134	Structure ofEscherichia coliUDP-N-acetylmuramoyl:L-alanine ligase (MurC). Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1466-1474.	2.5	31
135	Implications of Binding Mode and Active Site Flexibility for Inhibitor Potency against the Salicylate Synthase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2012, 51, 4868-4879.	2.5	31
136	Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1367-1372.	7.1	31
137	Crystal and molecular structure of pentacarbonyl(trimethylphosphine sulphide)chromium(0). Journal of the Chemical Society Dalton Transactions, 1973, , 2205.	1.1	30
138	Specific binding of cerium by human lactoferrin stimulates the oxidation of Ce3+ to Ce4+. Journal of the American Chemical Society, 1994, 116, 7889-7890.	13.7	30
139	Structural and Functional Consequences of Binding Site Mutations in Transferrin:Â Crystal Structures of the Asp63Glu and Arg124Ala Mutants of the N-Lobe of Human Transferrinâ€,‡. Biochemistry, 2003, 42, 7084-7089.	2.5	30
140	Crystal Structure of a Putative Methyltransferase from Mycobacterium tuberculosis : Misannotation of a Genome Clarified by Protein Structural Analysis. Journal of Bacteriology, 2003, 185, 4057-4065.	2.2	29
141	Synthesis and structure–activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 929-933.	2.2	27
142	A slow-forming isopeptide bond in the structure of the major pilin SpaD from <i>Corynebacterium diphtheriae</i> has implications for pilus assembly. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1190-1201.	2.5	27
143	Interaction of benzo-1,3-thiazoline-2-thione and related ligands with copper(II) salts and the single-crystal X-ray structure of		

#	Article	IF	CITATIONS
145	Synthesis and structure–activity relationships of N-6 substituted analogues of 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of Wee1 and Chk1 checkpoint kinases. European Journal of Medicinal Chemistry, 2008, 43, 1276-1296.	5.5	26
146	Tat–Dependent Translocation of an F420–Binding Protein of Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e45003.	2.5	26
147	Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (ClmU). Organic and Biomolecular Chemistry, 2013, 11, 8113.	2.8	26
148	Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties of Both. Journal of Biological Chemistry, 2015, 290, 18187-18198.	3.4	26
149	Serological Evidence of Immune Priming by Group A Streptococci in Patients with Acute Rheumatic Fever. Frontiers in Microbiology, 2016, 7, 1119.	3.5	26
150	Preliminary crystallographic studies of copper(II)- and oxalate-substituted human lactoferrin. Journal of Molecular Biology, 1991, 219, 155-159.	4.2	25
151	X-ray Crystallography and Mass Spectroscopy Reveal that the N-lobe of Human Transferrin Expressed inPichia pastorisls Folded Correctly but Is Glycosylated on Serine-32â€,‡. Biochemistry, 1999, 38, 2535-2541.	2.5	25
152	Oligomerization and ligand binding in a homotetrameric hemoglobin: Two high-resolution crystal structures of hemoglobin Bart's (γ4), a marker for α-thalassemia. Protein Science, 2001, 10, 1739-1749.	7.6	25
153	Crystal and molecular structure of tetracarbonyl(3,6-dithiaoctane)chromium(0): evidence for ? bonding by a thioether ligand. Journal of the Chemical Society Dalton Transactions, 1976, , 1769.	1.1	24
154	Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria. Biochemical Society Transactions, 2015, 43, 787-794.	3.4	24
155	Elongation of the Poly-γ-glutamate Tail of F420 Requires Both Domains of the F420:γ-Glutamyl Ligase (FbiB) of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 6882-6894.	3.4	24
156	Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development. Journal of Pharmaceutical Sciences, 2017, 106, 477-494.	3.3	24
157	Synthetic, spectroscopic and X-ray crystallographic studies on phenylcyanamidocopper(I) complexes. Journal of the Chemical Society Dalton Transactions, 1991, , 1243.	1.1	23
158	Structural and Functional Analysis of Rv3214 from Mycobacterium tuberculosis , a Protein with Conflicting Functional Annotations, Leads to Its Characterization as a Phosphatase. Journal of Bacteriology, 2006, 188, 3589-3599.	2.2	23
159	Making Sense of a Missense Mutation: Characterization of MutT2, a Nudix Hydrolase from Mycobacterium tuberculosis, and the G58R Mutant Encoded in W-Beijing Strains of M. tuberculosis. Biochemistry, 2009, 48, 699-708.	2.5	23
160	The Substrate Capture Mechanism of Mycobacterium tuberculosis Anthranilate Phosphoribosyltransferase Provides a Mode for Inhibition. Biochemistry, 2013, 52, 1776-1787.	2.5	23
161	Structure and Function of Human Xylulokinase, an Enzyme with Important Roles in Carbohydrate Metabolism. Journal of Biological Chemistry, 2013, 288, 1643-1652.	3.4	23
162	Single Crystal Polarized Spectroscopy of Manganese Superoxide Dismutase and Electronic Structure of the Active Site Metal Complex. Journal of Physical Chemistry B, 1998, 102, 4668-4677.	2.6	22

#	Article	IF	CITATIONS
163	"Dilysine Trigger―in Transferrins Probed by Mutagenesis of Lactoferrin: Crystal Structures of the R210G, R210E, and R210L Mutants of Human Lactoferrinâ€,‡. Biochemistry, 2002, 41, 14167-14175.	2.5	22
164	Isopeptide bonds in bacterial pili and their characterization by Xâ€ray crystallography and mass spectrometry. Biopolymers, 2009, 91, 1126-1134.	2.4	22
165	Synthetic, spectroscopic, and X-ray crystallographic studies on phenylcyanamidocopper(II) complexes. The characterization of three different co-ordination modes for phenylcyanamide anions. Journal of the Chemical Society Dalton Transactions, 1990, , 2785.	1.1	21
166	Purification and characterization of Ak.1 protease, a thermostable subtilisin with a disulphide bond in the substrate-binding cleft. Biochemical Journal, 2000, 350, 321-328.	3.7	21
167	Copper co-ordination to thioether ligands: crystal and molecular structures of bis(2,5-dithiahexane)copper(II) bis(tetrafluoroborate) and bis(3,6-dithiaoctane)copper(I) tetrafluoroborates. Journal of the Chemical Society Dalton Transactions, 1977, , 877.	1.1	20
168	Crystal structure of a human embryonic haemoglobin: the carbonmonoxy form of gower II (α 2 ϵ 2) haemoglobin at 2.9 å resolution 1 1Edited by K. Nagai. Journal of Molecular Biology, 1998, 280, 475-484.	4.2	20
169	Structural genomics as an approach towards understanding the biology of tuberculosis. Journal of Structural and Functional Genomics, 2007, 8, 57-65.	1.2	20
170	The Structure and Unusual Protein Chemistry of Hypoxic Response Protein 1, a Latency Antigen and Highly Expressed Member of the DosR Regulon in Mycobacterium tuberculosis. Journal of Molecular Biology, 2008, 383, 822-836.	4.2	20
171	Synthesis and evaluation of M. tuberculosis salicylate synthase (Mbtl) inhibitors designed to probe plasticity in the active site. Organic and Biomolecular Chemistry, 2012, 10, 9223.	2.8	20
172	Structure of naphthoate synthase (MenB) fromMycobacterium tuberculosisin both native and product-bound forms. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1199-1206.	2.5	19
173	The Structure of a Putative Scaffolding Protein of Immature Poxvirus Particles as Determined by Electron Microscopy Suggests Similarity with Capsid Proteins of Large Icosahedral DNA Viruses. Journal of Virology, 2007, 81, 11075-11083.	3.4	19
174	Crystallographic and Mutational Data Show That the Streptococcal Pyrogenic Exotoxin J Can Use a Common Binding Surface for T-cell Receptor Binding and Dimerization. Journal of Biological Chemistry, 2004, 279, 38571-38576.	3.4	18
175	The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module. Journal of Biological Chemistry, 2012, 287, 38178-38189.	3.4	18
176	Removal of the C-Terminal Regulatory Domain of α-Isopropylmalate Synthase Disrupts Functional Substrate Binding. Biochemistry, 2012, 51, 2289-2297.	2.5	18
177	Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from <i>Mycobacterium tuberculosis</i> . Biochemical Journal, 2014, 461, 87-98.	3.7	18
178	Structural Views along the Mycobacterium tuberculosis MenD Reaction Pathway Illuminate Key Aspects of Thiamin Diphosphate-Dependent Enzyme Mechanisms. Structure, 2016, 24, 1167-1177.	3.3	18
179	The interaction of 1-methylimidazoline-2(3H)-thione with copper(II) salts. Journal of the Chemical Society Dalton Transactions, 1989, , 39.	1.1	17
180	Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in Mycobacterium smegmatis. Journal of Bacteriology, 2014, 196, 3472-3481.	2.2	17

#	Article	IF	CITATIONS
181	Structure and inhibition of subunit I of the anthranilate synthase complex of <i>Mycobacterium tuberculosis</i> and expression of the active complex. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2297-2308.	2.5	17
182	Copper co-ordination to thioether ligands. Chemical, spectroscopic, and crystallographic studies on copper(I) complexes of 2-(3,3-dimethyl-2-thiabutyl)pyridine and the 2-(3,3-dimethyl-2-thiabutyl)pyridinium cation. Journal of the Chemical Society Dalton Transactions, 1981, , 1746.	1.1	15
183	Copper promoted reactions of the heterocyclic thioamide, 2-thiazolidinethione. Inorganica Chimica Acta, 1985, 105, L5-L7.	2.4	15
184	Structures of Glycinamide Ribonucleotide Transformylase (PurN) from Mycobacterium tuberculosis Reveal a Novel Dimer with Relevance to Drug Discovery. Journal of Molecular Biology, 2009, 389, 722-733.	4.2	15
185	Structural Analyses of a Purine Biosynthetic Enzyme from Mycobacterium tuberculosis Reveal a Novel Bound Nucleotide. Journal of Biological Chemistry, 2011, 286, 40706-40716.	3.4	15
186	Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. Journal of Structural Biology, 2014, 187, 276-281.	2.8	15
187	Repurposing the Chemical Scaffold of the Antiâ€Arthritic Drug Lobenzarit to Target Tryptophan Biosynthesis in <i>Mycobacterium tuberculosis</i> . ChemBioChem, 2014, 15, 852-864.	2.6	15
188	Allosteric regulation of menaquinone (vitamin K2) biosynthesis in the human pathogen Mycobacterium tuberculosis. Journal of Biological Chemistry, 2020, 295, 3759-3770.	3.4	15
189	X-Ray Structural Analysis of Bovine Lactoferrin at 2.5 Ã Resolution. Advances in Experimental Medicine and Biology, 1994, 357, 235-238.	1.6	15
190	Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ, 2016, 3, 10-19.	2.2	15
191	Copper(II) promoted desulphurization of N-phenylthiourea. The synthesis and X-ray structure of [{Cu(bipy)(pc)2}2] (bipy = 2,2′-bipyridine, pc = phenylcyanamide). Polyhedron, 1989, 8, 2219-2221.	2.2	14
192	Crystal Structure of a Truncated Mutant of Glucose-Fructose Oxidoreductase Shows that an N-terminal Arm Controls Tetramer Formation. Journal of Molecular Biology, 2000, 304, 575-584.	4.2	14
193	Structure and Activity of Streptococcus pyogenes SipA: A Signal Peptidase-Like Protein Essential for Pilus Polymerisation. PLoS ONE, 2014, 9, e99135.	2.5	14
194	Characterization of the proline-utilization pathway in <i>Mycobacterium tuberculosis</i> through structural and functional studies. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 968-980.	2.5	14
195	Group A <i>Streptococcus</i> T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infection and Immunity, 2019, 87, .	2.2	14
196	Convergent pathways to biosynthesis of the versatile cofactor F420. Current Opinion in Structural Biology, 2020, 65, 9-16.	5.7	14
197	Preliminary crystallographic studies of the amino terminal half of human lactoferrin in its iron-saturated and iron-free forms. Journal of Molecular Biology, 1992, 228, 973-974.	4.2	13
198	Structures of <i>Mycobacterium tuberculosis</i> folylpolyglutamate synthase complexed with ADP and AMPPCP. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 745-753.	2.5	13

#	Article	IF	CITATIONS
199	Crystal structure of the essential Mycobacterium tuberculosis phosphopantetheinyl transferase PptT, solved as a fusion protein with maltose binding protein. Journal of Structural Biology, 2014, 188, 274-278.	2.8	13
200	A modeling study of the interaction and electron transfer between cytochrome b 5 and some oxidized haemoglobins. Journal of Biological Inorganic Chemistry, 2002, 7, 23-30.	2.6	12
201	Crystallization and preliminary X-ray crystallographic analysis of Mbtl, a protein essential for siderophore biosynthesis inMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 121-123.	0.7	12
202	Structural and functional analysis of Rv0554 from <i>Mycobacterium tuberculosis</i> : testing a putative role in menaquinone biosynthesis. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 909-917.	2.5	12
203	Ligand promiscuity within the internal cavity of Epiphyas postvittana Takeout 1 protein. Journal of Structural Biology, 2013, 182, 259-263.	2.8	12
204	Investigating the Reaction Mechanism of F ₄₂₀ -Dependent Glucose-6-phosphate Dehydrogenase from <i>Mycobacterium tuberculosis</i> : Kinetic Analysis of the Wild-Type and Mutant Enzymes. Biochemistry, 2016, 55, 5566-5577.	2.5	12
205	Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability. Scientific Reports, 2017, 7, 42753.	3.3	12
206	The active site of the Mycobacterium tuberculosis branched-chain amino acid biosynthesis enzyme dihydroxyacid dehydratase contains a 2Fe–2S cluster. Journal of Biological Chemistry, 2019, 294, 13158-13170.	3.4	12
207	Crystal and molecular structure of the polymeric complex chloro(2,5-dithiahexane)copper(I). Journal of the Chemical Society Dalton Transactions, 1978, , 416.	1.1	11
208	Crystallization and preliminary X-ray crystallographic analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 403-406.	0.7	11
209	Three-dimensional structure and ligand binding properties of trichosurin, a metatherian lipocalin from the milk whey of the common brushtail possum <i>Trichosurus vulpecula</i> . Biochemical Journal, 2007, 408, 29-38.	3.7	11
210	Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5′-[<i>p</i> -(fluorosulfonyl)benzoyl]adenosine. Biochemical Journal, 2008, 416, 281-288.	3.7	11
211	Structure of phosphoserine aminotransferase from <i>Mycobacterium tuberculosis</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 553-563.	2.5	11
212	Structures of <i>Mycobacterium tuberculosis</i> Anthranilate Phosphoribosyltransferase Variants Reveal the Conformational Changes That Facilitate Delivery of the Substrate to the Active Site. Biochemistry, 2015, 54, 6082-6092.	2.5	11
213	Crystallization of the C-terminal Domain of Rabbit Serum Hemopexin. Journal of Molecular Biology, 1993, 229, 251-252.	4.2	10
214	LISA: an intranet-based flexible database for protein crystallography project management. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1341-1343.	2.5	10
215	Structure of a domain-opened mutant (R121D) of the human lactoferrin N-lobe refined from a merohedrally twinned crystal form. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 955-962.	2.5	10
216	Purification, crystallization and preliminary crystallographic analysis of mousemyo-inositol oxygenase. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 811-813.	0.7	10

#	Article	IF	CITATIONS
217	The Structure of an Ancient Conserved Domain Establishes a Structural Basis for Stable Histidine Phosphorylation and Identifies a New Family of Adenosine-specific Kinases. Journal of Biological Chemistry, 2006, 281, 22131-22141.	3.4	10
218	Crystal Structures of E. coli Native MenH and Two Active Site Mutants. PLoS ONE, 2013, 8, e61325.	2.5	10
219	Copper(II)-promoted oxidation of mercaptocarboxylic acids. The characterization of disulphide- and oxalate-containing products. Crystal structures of [{Cu(bipy)(2,2′-dtdp)}n]·3nH2O and [{Cu(bipy)(3,3′-dtdp)}n]·2nH2O (bipy = 2,2′-bipyridine, dtdp = dithiodipropanoate). Journal of the Chemica Society Dalton Transactions. 1990 2089-2094.	al ^{1.1}	9
220	Purification and characterization of Ak.1 protease, a thermostable subtilisin with a disulphide bond in the substrate-binding cleft. Biochemical Journal, 2000, 350, 321.	3.7	9
221	Expression, crystallization and preliminary characterization of methylmalonyl coenzyme A epimerase fromPropionibacterium shermanii. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 706-708.	2.5	9
222	Structure of HisF, a histidine biosynthetic protein fromPyrobaculum aerophilum. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1518-1525.	2.5	9
223	Crystallization and preliminary X-ray analysis ofN-acetyl-1-D-myo-inosityl-2-deoxy-α-D-glucopyranoside deacetylase (MshB) fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2316-2318.	2.5	9
224	Structures of two mutants that probe the role in iron release of the dilysine pair in the N-lobe of human transferrin. Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 408-414.	2.5	9
225	Synergism and Substitution in the Lactoferrins. Advances in Experimental Medicine and Biology, 1994, 357, 33-44.	1.6	9
226	Copper co-ordination to thioether ligands. Spectroscopic studies of dimeric copper(II) complexes of 2-(3,3-dimethyl-2-thiabutyl)pyridine and the crystal structure of di-µ-bromo-bis{bromo[2-(3,3-dimethyl-2-thiabutyl)pyridine-NS]copper(II)}. Journal of the Chemical Society Dalton Transactions, 1981, , 2054-2058.	1.1	8
227	A Structural Explanation for the Retinal Specificity of Class 1 ALDH Enzymes. Advances in Experimental Medicine and Biology, 1999, 463, 27-38.	1.6	8
228	A non-synonymous nucleotide substitution can account for one evolutionary route to sesquiterpene synthase activity in the TPS-b subgroup. FEBS Letters, 2011, 585, 1841-1846.	2.8	8
229	Purification, crystallization and preliminary crystallographic analysis of human dihydrodipicolinate synthase-like protein (DHDPSL). Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 59-62.	0.7	8
230	Crystallization and Preliminary X-ray Diffraction Studies on Cytosolic (Class 1) Aldehyde Dehydrogenase from Sheep Liver. Journal of Molecular Biology, 1994, 241, 263-264.	4.2	7
231	Iron-ic twists of fate. Nature Structural and Molecular Biology, 1997, 4, 869-871.	8.2	7
232	On the molecular-replacement problem in the presence of merohedral twinning: structure of the N-terminal half-molecule of human lactoferrin. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 129-138.	2.5	7
233	The Role of β Chains in the Control of the Hemoglobin Oxygen Binding Function:  Chimeric Human/Mouse Proteins, Structure, and Function. Biochemistry, 2001, 40, 15669-15675.	2.5	7
234	Subunit dissociation and reassociation leads to preferential crystallization of haemoglobin Bart's (γ4) from solutions of human embryonic haemoglobin Portland (ζ2γ2) at low pH. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 921-924.	2.5	7

#	Article	IF	CITATIONS
235	Electron transfer between cytochrome b5 and some oxidised haemoglobins: the role of ionic strength. Journal of Inorganic Biochemistry, 2002, 88, 328-334.	3.5	7
236	Crystallization and preliminary X-ray analysis of α-isopropylmalate synthase fromMycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1167-1169.	2.5	7
237	Black sheep among the flock of protein structures. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1-1.	2.5	7
238	In defence of our science – validation now!. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 115-115.	2.5	7
239	Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (<i>Lycopersicon esculentum</i>). Genome, 2001, 44, 368-374.	2.0	7
240	Purification and Crystallization of the Endoglycosidase PNGase F, a Peptide:N-glycosidase from Flavobacterium meningosepticum. Journal of Molecular Biology, 1994, 241, 624-626.	4.2	6
241	Crystallization and preliminary diffraction studies of the C-terminal domain of the DipZ homologue fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 243-245.	0.7	6
242	An arm-swapped dimer of the Streptococcus pyogenes pilin specific assembly factor SipA. Journal of Structural Biology, 2013, 183, 99-104.	2.8	6
243	A covalent adduct of MbtN, an acyl-ACP dehydrogenase from <i>Mycobacterium tuberculosis</i> , reveals an unusual acyl-binding pocket. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 862-872.	2.5	6
244	Regulation of human 4-hydroxy-2-oxoglutarate aldolase by pyruvate and α-ketoglutarate: implications for primary hyperoxaluria type-3. Biochemical Journal, 2019, 476, 3369-3383.	3.7	6
245	Spectroscopic studies on metal complexes of Aspergillus awamori-derived recombinant human lactoferrin. Inorganica Chimica Acta, 2000, 298, 187-194.	2.4	5
246	PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5′â€phosphate oxidase family. FEBS Letters, 2016, 590, 453-460.	2.8	5
247	Anthranilate phosphoribosyltransferase: Binding determinants for 5′-phospho-alpha- d -ribosyl-1′-pyrophosphate (PRPP) and the implications for inhibitor design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 264-274.	2.3	5
248	Cloning and Expression of the C-Terminal Lobe of Human Lactoferrin. Advances in Experimental Medicine and Biology, 1994, 357, 259-263.	1.6	5
249	Crystallographic Studies on Metal and Anion Substituted Human Lactoferrin. Advances in Experimental Medicine and Biology, 1994, 357, 265-269.	1.6	5
250	Crystallographic data deposition. Nature, 1996, 379, 202-202.	27.8	4
251	Crystallization and preliminary X-ray analysis of a conserved hypothetical protein PAE2754 fromPyrobaculum aerophilumand of a double Leu→Met mutant engineered for MAD phasing. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 733-735.	2.5	4
252	Purification, crystallization and preliminary crystallographic analysis of <i>Streptococcus pyogenes</i> laminin-binding protein Lbp. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 141-143.	0.7	4

#	Article	lF	CITATIONS
253	In defence of our science – validation now!. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 112-112.	0.7	4
254	Use of a repetitive seeding protocol to obtain diffraction-quality crystals of a putative humanD-xylulokinase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1259-1262.	0.7	4
255	Expression, purification and crystallization of a membrane-associated, catalytically active type I signal peptidase from <i>Staphylococcus aureus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 61-65.	0.8	4
256	Synthesis and structural insight into ESXâ€1 Substrate Protein C, an immunodominant <i>Mycobacterium tuberculosisâ€</i> secreted antigen. Biopolymers, 2016, 106, 267-274.	2.4	4
257	Structure of the ectodomain of the electron transporter Rv2874 fromMycobacterium tuberculosisreveals a thioredoxin-like domain combined with a carbohydrate-binding module. Acta Crystallographica Section D: Structural Biology, 2016, 72, 40-48.	2.3	4
258	Inhibition of Indigoidine Synthesis as a High-Throughput Colourimetric Screen for Antibiotics Targeting the Essential Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT. Pharmaceutics, 2021, 13, 1066.	4.5	4
259	Deposition and release of macromolecular structural data. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 2-3.	2.5	3
260	Crystallization and preliminary X-ray analysis of native and recombinant human bile-salt dependent lipase: strategies for improvement of diffraction quality. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 478-480.	2.5	3
261	Purification, crystallization and preliminary X-ray analysis ofEnterococcus faeciumaminoglycoside-2′′-phosphotransferase-Ib [APH(2′′)-Ib]. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 410-413.	0.7	3
262	Cloning, expression, purification and preliminary crystallographic data for Rv3214 (EntD), a predicted cofactor-dependent phosphoglycerate mutase fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 753-755.	0.7	3
263	Cloning, expression, purification and preliminary crystallographic analysis of the RNase HI domain of theMycobacterium tuberculosisprotein Rv2228c as a maltose-binding protein fusion. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 746-749.	0.7	3
264	Metal-Containing Proteins, Macrocycles, and Coordination Complexes in Therapeutic Applications and Disease. Metal-Based Drugs, 2008, 2008, 1-2.	3.8	3
265	Expression, purification, crystallization and preliminary crystallographic analysis of SpaA, a major pilin fromCorynebacterium diphtheriae. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 802-804.	0.7	3
266	Purification, crystallization and preliminary crystallographic analysis of the minor pilin FctB fromStreptococcus pyogenes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 177-179.	0.7	3
267	Expectation bias and information content. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 83-83.	0.7	3
268	Mechanistic insights into F 420 -dependent glucose-6-phosphate dehydrogenase using isotope effects and substrate inhibition studies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 387-395.	2.3	3
269	F420-dependent glucose-6-phosphate dehydrogenase: A comprehensive review. Inorganica Chimica Acta, 2021, 524, 120417.	2.4	3
270	Convergent weaponry in a biological arms race. ELife, 2015, 4, .	6.0	3

#	Article	IF	CITATIONS
271	From Penicillin to the Ribosome: Revolutions in the Determination and Use of Molecular Structure in Chemistry and Biology. Australian Journal of Chemistry, 2004, 57, 829.	0.9	2
272	Crystallization of a protein using dehydration without a precipitant. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 565-568.	0.7	2
273	Deposition of diffraction images to be discussed at the Open Meeting of the Commission on Biological Macromolecules of the IUCr in Osaka. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 231-232.	0.7	2
274	Citations in supplementary material. Journal of Applied Crystallography, 2010, 43, 1285-1286.	4.5	2
275	Citations in supplementary material. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1269-1270.	2.5	2
276	Cloning, expression, purification, crystallization and preliminary X-ray studies of the C-terminal domain of Rv3262 (FbiB) fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1274-1277.	0.7	2
277	Purification, crystallization and preliminary crystallographic analysis of the adhesion domain of Epf fromStreptococcus pyogenes. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 793-797.	0.7	2
278	Celebrating biological crystallography:Acta Dtwenty years on. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1-1.	2.5	2
279	Preparation of truncated orf virus entry fusion complex proteins by chemical synthesis. Journal of Peptide Science, 2014, 20, 398-405.	1.4	2
280	Mass spectral determination of phosphopantetheinylation specificity for carrier proteins in Mycobacterium tuberculosis. FEBS Open Bio, 2016, 6, 1220-1226.	2.3	2
281	Datasets, processing and refinement details for Mtb -AnPRT: inhibitor structures with various space groups. Data in Brief, 2017, 15, 1019-1029.	1.0	2
282	New perspectives in biological crystallography. IUCrJ, 2014, 1, 82-83.	2.2	2
283	Proteins: accelerating towards the new millennium. Current Opinion in Structural Biology, 1999, 9, 705-706.	5.7	1
284	Purification, crystallization and preliminary X-ray analysis ofEscherichia coliUDP-N-acetylmuramoyl:L-alanine ligase (MurC). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1510-1513.	2.5	1
285	Making the most of two crystals: structural analysis of a conserved hypothetical protein using native gel screening and SAD phasing. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2242-2246.	2.5	1
286	Expectation bias and information content. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 141-141.	2.5	1
287	Purification, crystallization and preliminary X-ray studies of MbtN (Rv1346) fromMycobacterium tuberculosis. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1354-1356.	0.7	1
288	Use of a novel microtitration protocol to obtain diffraction-quality crystals of 4-hydroxy-2-oxoglutarate aldolase fromBos taurus. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1546-1549.	0.8	1

EDWARD N BAKER

#	Article	IF	CITATIONS
289	Use of a "silver bullet―to resolve crystal lattice dislocation disorder: A cobalamin complex of Δ1-pyrroline-5-carboxylate dehydrogenase from Mycobacterium tuberculosis. Journal of Structural Biology, 2015, 189, 153-157.	2.8	1
290	Engineering of Group A Streptococcus Isopeptide Bonds into Immunoglobulin-Like Protein Domains. Methods in Molecular Biology, 2020, 2136, 377-395.	0.9	1
291	Widening the reach of structural biology. IUCrJ, 2016, 3, 84-85.	2.2	1
292	Letter to the Editor. Journal of Biomolecular Structure and Dynamics, 1996, 13, 583-583.	3.5	0
293	Using Structural Genomics to Understand Mycobacterium Tuberculosis. IUBMB Life, 2004, 56, 113-117.	3.4	0
294	From Penicillin to the Ribosome: Revolutions in the Determination and Use of Molecular Structure in Chemistry and Biology ChemInform, 2004, 35, no.	0.0	0
295	The crystal structure of staphylococcal superantigenâ€like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Molecular Microbiology, 2008, 67, 473-473.	2.5	0
296	Citations in supplementary material. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1550-1551.	0.7	0
297	Small angle scattering – moving forward. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 619-619.	2.5	0
298	INTRAMOLECULAR ISOPEPTIDE BONDS: NOVEL POST-TRANSLATIONAL MODIFICATIONS IN BACTERIAL PILI AND CELL-SURFACE ADHESINS. , 2013, , 417-427.		0
299	Purification, crystallization and preliminary X-ray crystallographic studies of KstR2 (ketosteroid) Tj ETQq1 1 0.784 Biology Communications, 2014, 70, 1643-1645.	814 rgBT 0.8	/Overlock 1 0
300	Surface Proteins of Gram-Positive Pathogens: Using Crystallography to Uncover Novel Features in Drug and Vaccine Candidates. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 1-9.	0.5	0
301	X-Ray Structural Studies of Lactoferrin. , 1987, , 376-376.		0
302	Altered Domain Closure and Iron Binding in Lactoferrin Mutants. , 1997, , 25-38.		0
303	Mutagenesis of Human Lactoferrin and Expression in Baby Hamster Kidney Cells. , 1997, , 97-110.		0
304	Superantigen Architecture: Functional Decoration on a Conserved Scaffold. , 0, , 91-102.		0
305	Biological crystallography: new methods, new challenges. IUCrJ, 2015, 2, 155-156.	2.2	0
306	Determining the active site base and order of substrate addition within F 420 â€dependent glucoseâ€6â€phosphate using steadyâ€state and pre steadyâ€state kinetics and isotope effects methods. FASEB Journal, 2018, 32, 655.30.	0.5	0