Tomoko Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8357181/publications.pdf Version: 2024-02-01

		57758	26613
114	12,562	44	107
papers	citations	h-index	g-index
104	104	104	11000
134	134	134	11808
all docs	docs citations	times ranked	citing authors
134 all docs	134 docs citations	134 times ranked	11808 citing authors

#	Article	IF	CITATIONS
1	Land-based climate change mitigation measures can affect agricultural markets and food security. Nature Food, 2022, 3, 110-121.	14.0	61
2	Socio-economic trajectories, urban area expansion and ecosystem conservation affect global potential supply of bioenergy. Biomass and Bioenergy, 2022, 159, 106426.	5.7	3
3	Global biomass supply modeling for long-run management of the climate system. Climatic Change, 2022, 172, .	3.6	8
4	Relationship between maternal healthy eating literacy and healthy meal provision in families in Japan. Health Promotion International, 2021, 36, 641-648.	1.8	8
5	Land-based climate change mitigation potentials within the agenda for sustainable development. Environmental Research Letters, 2021, 16, 024006.	5.2	32
6	Critical adjustment of land mitigation pathways for assessing countries' climate progress. Nature Climate Change, 2021, 11, 425-434.	18.8	61
7	How Will Deforestation and Vegetation Degradation Affect Global Fire Activity?. Earth's Future, 2021, 9, e2020EF001786.	6.3	8
8	How many hot days and heavy precipitation days will grandchildren experience that break the records set in their grandparents' lives?. Environmental Research Communications, 2021, 3, 061002.	2.3	1
9	Reproducing complex simulations of economic impacts of climate change with lower-cost emulators. Geoscientific Model Development, 2021, 14, 3121-3140.	3.6	4
10	Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation. Nature Sustainability, 2021, 4, 884-891.	23.7	35
11	Comparing Meal Satisfaction Based on Different Types of Tableware: An Experimental Study of Japanese Cuisine Culture. Foods, 2021, 10, 1546.	4.3	2
12	Extreme climate events increase risk of global food insecurity and adaptation needs. Nature Food, 2021, 2, 587-595.	14.0	119
13	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	14.0	51
14	The importance of socioeconomic conditions in mitigating climate change impacts and achieving Sustainable Development Goals. Environmental Research Letters, 2021, 16, 014010.	5.2	17
15	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	23.7	27
16	International trade is a key component of climate change adaptation. Nature Climate Change, 2021, 11, 915-916.	18.8	7
17	Cost and attainability of meeting stringent climate targets without overshoot. Nature Climate Change, 2021, 11, 1063-1069.	18.8	102
18	Second-generation biomass energy potential for the world and the associated environmental impacts on the water consumption and nitrogen fertilizer inputs. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, I_191-I_196.	0.1	1

#	Article	IF	CITATIONS
19	Effects of dietary changes on climte change mitigation in Japan and United States. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, I_177-I_182.	0.1	3
20	Estimation of wind and solar energy potential considering future land use change in the world. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, I_183-I_189.	0.1	1
21	DISTRIBUTIONAL EFFECT OF CARBON TAX ON HOUSEHOLD CONSUMPTION IN JAPAN. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, I_263-I_273.	0.1	Ο
22	Global impacts of climate change mitigation through reduced surface ozone concentration on food consumption and risk of hunger. Journal of Japan Society of Civil Engineers Ser G (Environmental) Tj ETQq0 0 0	rgBƊ/Ωver	loc l 2 10 Tf 50
23	Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 2020, 163, 1553-1568.	3.6	112
24	Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change, 2020, 163, 1569-1586.	3.6	38
25	Assessment of bioenergy potential and associated costs in Japan for the 21st century. Renewable Energy, 2020, 162, 308-321.	8.9	16
26	Global hunger and climate change adaptation through international trade. Nature Climate Change, 2020, 10, 829-835.	18.8	117
27	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	18.8	245
28	Are scenario projections overly optimistic about future yield progress?. Global Environmental Change, 2020, 64, 102120.	7.8	11
29	Reliability and validity of a short Japanese version of the UPPS-P Impulsive Behavior Scale. Addictive Behaviors Reports, 2020, 12, 100305.	1.9	4
30	Food security under high bioenergy demand toward long-term climate goals. Climatic Change, 2020, 163, 1587-1601.	3.6	33
31	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	27.8	413
32	Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions. Environmental Health Perspectives, 2020, 128, 115001.	6.0	40
33	Reply to: An appeal to cost undermines food security risks of delayed mitigation. Nature Climate Change, 2020, 10, 420-421.	18.8	2
34	Modelling alternative futures of global food security: Insights from FOODSECURE. Global Food Security, 2020, 25, 100358.	8.1	35
35	Decarbonization pathways and energy investment needs for developing Asia in line with â€~well below' 2°C. Climate Policy, 2020, 20, 234-245	5.1	18
36	Air quality co-benefits from climate mitigation for human health in South Korea. Environment International, 2020, 136, 105507.	10.0	32

#	Article	IF	CITATIONS
37	Measuring the sustainable development implications of climate change mitigation. Environmental Research Letters, 2020, 15, 085004.	5.2	25
38	An assessment of the potential of using carbon tax revenue to tackle poverty. Environmental Research Letters, 2020, 15, 114063.	5.2	21
39	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	3.6	408
40	Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1). Geoscientific Model Development, 2020, 13, 6077-6092.	3.6	8
41	Global flood impacts on food consumption and risk of hunger through changes in crop yields Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_89-I_95.	0.1	0
42	Implications of near-term mitigation actions for mid-century energy investments in Asia. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_243-I_252.	0.1	2
43	CO-BENEFIT OF CLIMATE POLICY IN GLOBAL CROP YIELD CHANGES ASSOCIATED WITH TROPOSPHERIC OZONE DECREASES. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_129-I_140.	0.1	4
44	Tackling food consumption inequality to fight hunger without pressuring the environment. Nature Sustainability, 2019, 2, 826-833.	23.7	49
45	Dependence of economic impacts of climate change on anthropogenically directed pathways. Nature Climate Change, 2019, 9, 737-741.	18.8	49
46	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	12.8	123
47	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	23.7	152
48	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	3.6	496
49	Preschool children's eating and sleeping habits: late rising and brunch on weekends is related to several physical and mental symptoms. Sleep Medicine, 2019, 61, 73-81.	1.6	15
50	Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 2019, 11, 1041-1055.	5.6	39
51	Limiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change. Environmental Research Letters, 2019, 14, 124022.	5.2	12
52	Identifying trade-offs and co-benefits of climate policies in China to align policies with SDGs and achieve the 2 ŰC goal. Environmental Research Letters, 2019, 14, 124070.	5.2	21
53	Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nature Communications, 2019, 10, 5240.	12.8	49
54	Energy transformation cost for the Japanese mid-century strategy. Nature Communications, 2019, 10, 4737.	12.8	33

#	Article	IF	CITATIONS
55	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
56	Synergy potential between climate change mitigation and forest conservation policies in the Indonesian forest sector: implications for achieving multiple sustainable development objectives. Sustainability Science, 2019, 14, 1657-1672.	4.9	12
57	Estimating human health damage factors related to CO2 emissions by considering updated climate-related relative risks. International Journal of Life Cycle Assessment, 2019, 24, 1118-1128.	4.7	16
58	Asian Low-Carbon Energy Investment Outlook. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, I_247-I_254.	0.1	1
59	Multi-cobenefit of Redcution Measure in Food Loss and Waste. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, I_233-I_238.	0.1	0
60	Scenarios towards limiting global mean temperature increase below 1.5 °C. Nature Climate Change, 2018, 8, 325-332.	18.8	795
61	Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature Communications, 2018, 9, 1060.	12.8	52
62	Health risks of warming of 1.5 °C, 2 °C, and higher, above pre-industrial temperatures. Environmental Research Letters, 2018, 13, 063007.	5.2	65
63	Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability, 2018, 10, 3673.	3.2	27
64	Limited Role of Working Time Shift in Offsetting the Increasing Occupationalâ€Health Cost of Heat Exposure. Earth's Future, 2018, 6, 1588-1602.	6.3	34
65	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	3.6	61
66	Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization. Environmental Research Letters, 2018, 13, 045010.	5.2	24
67	Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 2018, 8, 699-703.	18.8	319
68	Inclusive climate change mitigation and food security policy under 1.5 °C climate goal. Environmental Research Letters, 2018, 13, 074033.	5.2	37
69	Co-benefits of climate mitigation on air quality and human health in Asian countries. Environment International, 2018, 119, 309-318.	10.0	85
70	Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Scientific Data, 2018, 5, 180210.	5.3	39
71	Socioeconomic factors and future challenges of the goal of limiting the increase in global average temperature to 1.5 ŰC. Carbon Management, 2018, 9, 447-457.	2.4	12
72	Transdisciplinary co-design of scientific research agendas: 40 research questions for socially relevant climate engineering research. Sustainability Science, 2017, 12, 31-44.	4.9	27

#	Article	IF	CITATIONS
73	Emission pathways to achieve 2.0°C and 1.5°C climate targets. Earth's Future, 2017, 5, 592-604.	6.3	28
74	Global land-use allocation model linked to an integrated assessment model. Science of the Total Environment, 2017, 580, 787-796.	8.0	85
75	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	5.2	172
76	Responses of crop yield growth to global temperature and socioeconomic changes. Scientific Reports, 2017, 7, 7800.	3.3	146
77	An Assessment of Indonesiaâ $€$ ™s Intended Nationally Determined Contributions. , 2017, , 125-142.		3
78	Implications of the Paris Agreement in the Context of Long-Term Climate Mitigation Goals. , 2017, , 11-29.		1
79	Land-use futures in the shared socio-economic pathways. Global Environmental Change, 2017, 42, 331-345.	7.8	645
80	Future air pollution in the Shared Socio-economic Pathways. Global Environmental Change, 2017, 42, 346-358.	7.8	277
81	Assessing uncertainties in land cover projections. Global Change Biology, 2017, 23, 767-781.	9.5	103
82	SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environmental Change, 2017, 42, 268-283.	7.8	354
83	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
84	Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environmental Research Letters, 2017, 12, 064010.	5.2	63
85	Downscaling Global Emissions and Its Implications Derived from Climate Model Experiments. PLoS ONE, 2017, 12, e0169733.	2.5	15
86	AIM/CGE V2.0: Basic Feature of the Model. , 2017, , 305-328.		19
87	The Effectiveness of the International Emissions Trading under the Paris Agreement. , 2017, , 65-75.		Ο
88	Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia. Sustainability, 2016, 8, 1283.	3.2	6
89	Hotspots of uncertainty in landâ€use and landâ€cover change projections: a globalâ€scale model comparison. Global Change Biology, 2016, 22, 3967-3983.	9.5	171
90	Will international emissions trading help achieve the objectives of the Paris Agreement?. Environmental Research Letters, 2016, 11, 104001.	5.2	70

#	Article	IF	CITATIONS
91	Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus, 2016, 5, 1620.	1.2	34
92	Quantifying the economic impact of changes in energy demand for space heating and cooling systems under varying climatic scenarios. Palgrave Communications, 2016, 2, .	4.7	29
93	Economic implications of climate change impacts on human health through undernourishment. Climatic Change, 2016, 136, 189-202.	3.6	72
94	Introducing detailed land-based mitigation measures into a computable general equilibrium model. Journal of Cleaner Production, 2016, 114, 233-242.	9.3	33
95	An assessment of GHG emissions and mitigation potential from Agriculture, Forestry and Other Land-Use in Cambodia. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, I_165-I_176.	0.1	1
96	ASSESSMENT OF GREENHOUSE GAS EMISSION PATHWAYS BY CONSIDERING A POSSIBLE CLIMATE SENSITIVITY RANGE UNDER DIFFERENT SOCIO-ECONOMIC SCENARIOS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, I_205-I_216.	0.1	1
97	Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environmental Research Letters, 2015, 10, 014010.	5.2	96
98	Consequence of Climate Mitigation on the Risk of Hunger. Environmental Science & Technology, 2015, 49, 7245-7253.	10.0	90
99	Climate change mitigation strategies in agriculture and land use in Indonesia. Mitigation and Adaptation Strategies for Clobal Change, 2015, 20, 409-424.	2.1	34
100	The future role of agriculture and land use change for climate change mitigation in Bangladesh. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1289-1304.	2.1	15
101	Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3274-3279.	7.1	568
102	The future of food demand: understanding differences in global economic models. Agricultural Economics (United Kingdom), 2014, 45, 51-67.	3.9	357
103	The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation. Energy Policy, 2014, 75, 379-391.	8.8	91
104	Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 3-20.	3.9	183
105	Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 103-116.	3.9	85
106	Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Security, 2014, 6, 685-699.	5.3	70
107	Global-scale projection and its sensitivity analysis of the health burden attributable to childhood undernutrition under the latest scenario framework for climate change research. Environmental Research Letters, 2014, 9, 064014.	5.2	18
108	Climate change mitigation strategies in agriculture, forestry and other land use sectors in Vietnam. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 15-32.	2.1	19

#	Article	IF	CITATIONS
109	Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics (United Kingdom), 2014, 45, 69-84.	3.9	220
110	Climate Change Impact and Adaptation Assessment on Food Consumption Utilizing a New Scenario Framework. Environmental Science & Technology, 2014, 48, 438-445.	10.0	85
111	Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics (United Kingdom), 2014, 45, 85-101.	3.9	172
112	ASSESSMENT OF FUTURE HEALTH DAMAGE ATTRIBUTABLE TO UNDERNOURISHMENT UNDER THE LATEST SCENARIO FRAMEWORK. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_463-I_468.	0.1	0
113	Development of impact functions of global crop yield for climate change policy support models. Climate in Biosphere, 2014, 14, 41-56.	0.1	1
114	Greenhouse gas emissions and mitigation potentials in agriculture, forestry and other land use in Southeast Asia. Journal of Integrative Environmental Sciences, 2012, 9, 159-176.	2.5	11