Giel G Van Dooren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8356899/publications.pdf

Version: 2024-02-01

57 papers

5,218 citations

34 h-index 55 g-index

68 all docs 68
docs citations

68 times ranked 4434 citing authors

#	Article	IF	CITATIONS
1	Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nature Reviews Microbiology, 2004, 2, 203-216.	28.6	560
2	Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Molecular and Biochemical Parasitology, 2004, 137, 13-21.	1.1	401
3	Dynamics of Neutrophil Migration in Lymph Nodes during Infection. Immunity, 2008, 29, 487-496.	14.3	366
4	Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Molecular Microbiology, 2005, 57, 405-419.	2.5	243
5	Evolution: Red Algal Genome Affirms a Common Origin of All Plastids. Current Biology, 2004, 14, R514-R516.	3.9	228
6	Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiology Reviews, 2006, 30, 596-630.	8.6	227
7	<i>Toxoplasma gondii</i> Tic20 is essential for apicoplast protein import. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13574-13579.	7.1	189
8	Genetic Evidence that an Endosymbiont-derived Endoplasmic Reticulum-associated Protein Degradation (ERAD) System Functions in Import of Apicoplast Proteins. Journal of Biological Chemistry, 2009, 284, 33683-33691.	3.4	163
9	Processing of an Apicoplast Leader Sequence inPlasmodium falciparum and the Identification of a Putative Leader Cleavage Enzyme. Journal of Biological Chemistry, 2002, 277, 23612-23619.	3.4	151
10	Building the Perfect Parasite: Cell Division in Apicomplexa. PLoS Pathogens, 2007, 3, e78.	4.7	147
11	TgCDPK3 Regulates Calcium-Dependent Egress of Toxoplasma gondii from Host Cells. PLoS Pathogens, 2012, 8, e1003066.	4.7	146
12	The Algal Past and Parasite Present of the Apicoplast. Annual Review of Microbiology, 2013, 67, 271-289.	7.3	142
13	Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii. Journal of Biological Chemistry, 2012, 287, 4957-4971.	3.4	138
14	Dynamics of T Cell, Antigen-Presenting Cell, and Pathogen Interactions during Recall Responses in the Lymph Node. Immunity, 2009, 31, 342-355.	14.3	128
15	A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii. Current Biology, 2009, 19, 277-286.	3.9	124
16	Dynamic Imaging of T Cell-Parasite Interactions in the Brains of Mice Chronically Infected with <i>Toxoplasma gondii </i> . Journal of Immunology, 2009, 182, 6379-6393.	0.8	122
17	The Toxoplasma Apicoplast Phosphate Translocator Links Cytosolic and Apicoplast Metabolism and Is Essential for Parasite Survival. Cell Host and Microbe, 2010, 7, 62-73.	11.0	122
18	Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2003, 132, 59-66.	1.1	120

#	Article	IF	Citations
19	Translocation of proteins across the multiple membranes of complex plastids. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1541, 34-53.	4.1	119
20	A Novel Dynamin-Related Protein Has Been Recruited for Apicoplast Fission in Toxoplasma gondii. Current Biology, 2009, 19, 267-276.	3.9	116
21	The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in Toxoplasma. PLoS Pathogens, 2014, 10, e1004074.	4.7	92
22	Control of human toxoplasmosis. International Journal for Parasitology, 2021, 51, 95-121.	3.1	91
23	Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. ELife, 2018, 7, .	6.0	85
24	Comment on "A Green Algal Apicoplast Ancestor". Science, 2003, 301, 49a-49.	12.6	68
25	Traffic Jams: Protein Transport in Plasmodium falciparum. Parasitology Today, 2000, 16, 421-427.	3.0	64
26	An Apicoplast Localized Ubiquitylation System Is Required for the Import of Nuclear-encoded Plastid Proteins. PLoS Pathogens, 2013, 9, e1003426.	4.7	63
27	The Use and Abuse of Heme in Apicomplexan Parasites. Antioxidants and Redox Signaling, 2012, 17, 634-656.	5.4	62
28	Identification of cryptic subunits from an apicomplexan ATP synthase. ELife, 2018, 7, .	6.0	59
29	The Import of Proteins into the Mitochondrion of Toxoplasma gondii. Journal of Biological Chemistry, 2016, 291, 19335-19350.	3.4	56
30	Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites. Nature Communications, 2017, 8, 14455.	12.8	56
31	Ciliate Pellicular Proteome Identifies Novel Protein Families with Characteristic Repeat Motifs That Are Common to Alveolates. Molecular Biology and Evolution, 2011, 28, 1319-1331.	8.9	55
32	Tic22 Is an Essential Chaperone Required for Protein Import into the Apicoplast*. Journal of Biological Chemistry, 2012, 287, 39505-39512.	3.4	54
33	Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathogens, 2016, 12, e1005765.	4.7	47
34	A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii. Nucleic Acids Research, 2015, 43, 4661-4675.	14.5	45
35	Regulation of surface coat exchange by differentiating African trypanosomes. Molecular and Biochemical Parasitology, 2006, 147, 211-223.	1.1	44
36	The tyrosine transporter of Toxoplasma gondii is a member of the newly defined apicomplexan amino acid transporter (ApiAT) family. PLoS Pathogens, 2019, 15, e1007577.	4.7	39

#	Article	IF	CITATIONS
37	Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites. Blood, 2015, 125, 534-541.	1.4	37
38	Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Molecular and Biochemical Parasitology, 2019, 232, 111204.	1.1	35
39	Divergent features of the coenzyme Q:cytochrome c oxidoreductase complex in Toxoplasma gondii parasites. PLoS Pathogens, 2021, 17, e1009211.	4.7	24
40	Characterization of the apicoplast-localized enzyme TgUroD in Toxoplasma gondii reveals a key role of the apicoplast in heme biosynthesis. Journal of Biological Chemistry, 2020, 295, 1539-1550.	3.4	23
41	Characterization of the Chloroquine Resistance Transporter Homologue in Toxoplasma gondii. Eukaryotic Cell, 2014, 13, 1360-1370.	3.4	18
42	Calcium negatively regulates secretion from dense granules in <scp> <i>Toxoplasma gondii</i> </scp> . Cellular Microbiology, 2019, 21, e13011.	2.1	18
43	Characterization of the ATP4 ion pump in Toxoplasma gondii. Journal of Biological Chemistry, 2019, 294, 5720-5734.	3.4	18
44	A key cytosolic iron–sulfur cluster synthesis protein localizes to the mitochondrion of <i>Toxoplasma gondii</i> . Molecular Microbiology, 2021, 115, 968-985.	2.5	16
45	Differential parasite drive. Nature, 2007, 450, 955-956.	27.8	11
46	The Dark Side of the Chloroplast: Biogenesis, Metabolism and Membrane Biology of the Apicoplast. Advances in Botanical Research, 2017, 84, 145-185.	1.1	11
47	Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Scientific Reports, 2021, 11, 6787.	3.3	10
48	Substrate-mediated regulation of the arginine transporter of Toxoplasma gondii. PLoS Pathogens, 2021, 17, e1009816.	4.7	9
49	Real-Time Analysis of Mitochondrial Electron Transport Chain Function in Toxoplasma gondii Parasites Using a Seahorse XFe96 Extracellular Flux Analyzer. Bio-protocol, 2022, 12, e4288.	0.4	9
50	A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathogens, 2021, 17, e1009797.	4.7	8
51	Coordinated action of multiple transporters in the acquisition of essential cationic amino acids by the intracellular parasite Toxoplasma gondii. PLoS Pathogens, 2021, 17, e1009835.	4.7	8
52	Measuring Solute Transport in Toxoplasma gondii Parasites. Methods in Molecular Biology, 2020, 2071, 245-268.	0.9	5
53	The apicoplast and mitochondrion of Toxoplasma gondii. , 2020, , 499-545.		4
54	Novel vacuoles in Toxoplasma. Molecular Microbiology, 2010, 76, 1335-1339.	2.5	2

#	Article	IF	CITATIONS
55	An integrative bioinformatic predictor of protein sub-cellular localisation in malaria. BMC Bioinformatics, 2011, 12, .	2.6	1
56	Nanos gigantium humeris insidentes: old papers informing new research into toxoplasma gondii. International Journal for Parasitology, 2021, 51, 1193-1193.	3.1	1
57	Erythropoietic Protoporphyric Red Blood Cells Are Resistant to the Growth of Malarial Parasites. Blood, 2014, 124, 2670-2670.	1.4	0