John D Gilbertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8354071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NO Coupling by Nonclassical Dinuclear Dinitrosyliron Complexes to Form N ₂ O Dictated by Hemilability. Inorganic Chemistry, 2021, 60, 15901-15909.	4.0	2
2	Harnessing the active site triad: merging hemilability, proton responsivity, and ligand-based redox-activity. Dalton Transactions, 2020, 49, 960-965.	3.3	9
3	Complete denitrification of nitrate and nitrite to N ₂ gas by samarium(<scp>ii</scp>) iodide. Chemical Communications, 2020, 56, 11441-11444.	4.1	5
4	Uncoupled Redox-Inactive Lewis Acids in the Secondary Coordination Sphere Entice Ligand-Based Nitrite Reduction. Inorganic Chemistry, 2018, 57, 9601-9610.	4.0	33
5	Hemilabile Proton Relays and Redox Activity Lead to {FeNO} ^{<i>x</i>} and Significant Rate Enhancements in NO ₂ [–] Reduction. Journal of the American Chemical Society, 2018, 140, 17040-17050.	13.7	24
6	Ligand-based reduction of nitrate to nitric oxide utilizing a proton-responsive secondary coordination sphere. Chemical Communications, 2017, 53, 11249-11252.	4.1	30
7	Stabilization of a Zn(<scp>ii</scp>) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chemical Communications, 2016, 52, 7680-7682.	4.1	23
8	Nitrite reduction by a pyridinediimine complex with a proton-responsive secondary coordination sphere. Chemical Communications, 2016, 52, 11016-11019.	4.1	27
9	Square planar Cu(<scp>i</scp>) stabilized by a pyridinediimine ligand. Chemical Communications, 2016, 52, 4156-4159.	4.1	22
10	Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere. Inorganic Chemistry, 2016, 55, 555-557.	4.0	30
11	Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes. Inorganic Chemistry, 2015, 54, 7239-7248.	4.0	17
12	Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators. Chemistry of Materials, 2014, 26, 1291-1293.	6.7	55
13	Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators. ACS Nano, 2014, 8, 3461-3467.	14.6	281
14	Pyridinediimine Iron Dicarbonyl Complexes with Pendant Lewis Bases and Lewis Acids Located in the Secondary Coordination Sphere. European Journal of Inorganic Chemistry, 2013, 2013, 4008-4015.	2.0	11
15	Ligand-Based Reduction of CO ₂ and Release of CO on Iron(II). Inorganic Chemistry, 2012, 51, 9168-9170.	4.0	39
16	Synthesis and Stabilization of a Monomeric Iron(II) Hydroxo Complex via <i>Intra</i> molecular Hydrogen Bonding in the Secondary Coordination Sphere. Inorganic Chemistry, 2010, 49, 8656-8658.	4.0	30
17	Enhanced Oxygen Activation over Supported Bimetallic Auâ^'Ni Catalysts. Journal of Physical Chemistry C, 2010, 114, 11498-11508.	3.1	61
18	Ultrafast Optical Study of Small Gold Monolayer Protected Clusters: A Closer Look at Emission. Journal of Physical Chemistry C, 2010, 114, 15979-15985.	3.1	73

JOHN D GILBERTSON

#	Article	IF	CITATIONS
19	CO Oxidation and Toluene Hydrogenation by Pt/TiO2 Catalysts Prepared from Dendrimer Encapsulated Nanoparticle Precursors. Topics in Catalysis, 2008, 49, 233-240.	2.8	26
20	Kinetic Evaluation of Highly Active Supported Gold Catalysts Prepared from Monolayer-Protected Clusters: An Experimental Michaelisâ^'Menten Approach for Determining the Oxygen Binding Constant during CO Oxidation Catalysis. Journal of the American Chemical Society, 2008, 130, 10103-10115.	13.7	81
21	Air and Water Free Solid-Phase Synthesis of Thiol Stabilized Au Nanoparticles with Anchored, Recyclable Dendrimer Templates. Langmuir, 2007, 23, 11239-11245.	3.5	21
22	Coordination Chemistry of H2and N2in Aqueous Solution. Reactivity and Mechanistic Studies Usingtrans-Fell(P2)2X2-Type Complexes (P2= a Chelating, Water-Solubilizing Phosphine). Inorganic Chemistry, 2007, 46, 1205-1214.	4.0	55
23	Dendrimer templates for supported Au catalysts. Catalysis Today, 2007, 122, 370-377.	4.4	35
24	Synthesis of ROMP Monomers Containing Metal–Metal Bonds. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 439-446.	3.7	4
25	Reduction of N2to Ammonia and Hydrazine Utilizing H2as the Reductant. Journal of the American Chemical Society, 2005, 127, 10184-10185.	13.7	104
26	H2Activation in Aqueous Solution:Â Formation oftrans-[Fe(DMeOPrPE)2H(H2)]+via the Heterolysis of H2in Water. Inorganic Chemistry, 2004, 43, 3341-3343.	4.0	34
27	Precursors to Water-Soluble Dinitrogen Carriers. Synthesis of Water-Soluble Complexes of Iron(II) Containing Water-Soluble Chelating Phosphine Ligands of the Type 1,2-Bis(bis(hydroxyalkyl)phosphino)ethane. Inorganic Chemistry, 2002, 41, 5453-5465.	4.0	39