Gwen Falony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8354068/publications.pdf Version: 2024-02-01

CWEN FALONY

#	Article	IF	CITATIONS
1	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	12.1	95
2	FLEXiGUT: Rationale for exposomics associations with chronic low-grade gut inflammation. Environment International, 2022, 158, 106906.	10.0	7
3	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
4	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102
5	The virota and its transkingdom interactions in the healthy infant gut. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114619119.	7.1	30
6	Variation and transmission of the human gut microbiota across multiple familial generations. Nature Microbiology, 2022, 7, 87-96.	13.3	32
7	Effect of cryopreservation medium conditions on growth and isolation of gut anaerobes from human faecal samples. Microbiome, 2022, 10, .	11.1	6
8	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	21.4	676
9	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	12.1	58
10	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	11.1	92
11	Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nature Communications, 2021, 12, 3562.	12.8	30
12	Effect of obesity on gastrointestinal transit, pressure and pH using a wireless motility capsule. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 167, 1-8.	4.3	16
13	Specific contributions of segmental transit times to gut microbiota composition. Gut, 2021, , gutjnl-2021-325916.	12.1	4
14	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
15	Successional Stages in Infant Gut Microbiota Maturation. MBio, 2021, 12, e0185721.	4.1	48
16	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
17	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283
18	Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nature Microbiology, 2020, 5, 1079-1087.	13.3	144

GWEN FALONY

#	Article	IF	CITATIONS
19	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	30.7	1,281
20	Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nature Microbiology, 2019, 4, 1826-1831.	13.3	149
21	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019, 74, 53-64.	1.2	34
22	The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology, 2019, 4, 623-632.	13.3	1,206
23	Population-level analysis of <i>Blastocystis</i> subtype prevalence and variation in the human gut microbiota. Gut, 2019, 68, 1180-1189.	12.1	149
24	Gut microbiota dynamics and uraemic toxins: one size does not fit all. Gut, 2019, 68, 2257.1-2260.	12.1	37
25	Practical guidelines for gut microbiome analysis in microbiota-gut-brain axis research. Behavioral and Brain Sciences, 2019, 42, .	0.7	1
26	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	13.3	81
27	Butyrate Producers as Potential Next-Generation Probiotics: Safety Assessment of the Administration of <i>Butyricicoccus pullicaecorum</i> to Healthy Volunteers. MSystems, 2018, 3, .	3.8	99
28	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
29	Prebiotic Wheat Bran Fractions Induce Specific Microbiota Changes. Frontiers in Microbiology, 2018, 9, 31.	3.5	45
30	Beyond <i>Oxalobacter</i> : the gut microbiota and kidney stone formation. Gut, 2018, 67, 2078-2079.	12.1	5
31	Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. ELife, 2018, 7, .	6.0	62
32	Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66, 1968-1974.	12.1	370
33	Therapeutic Manipulation of the Gut Microbiota Through Diet to Reduce Intestinal Inflammation: Results from the FIT Trial. Gastroenterology, 2017, 152, S1.	1.3	5
34	Profiling of the Fecal Microbiota and Metabolome in Patients with Inflammatory Bowel Disease and their Unaffected Relatives. Gastroenterology, 2017, 152, S991.	1.3	0
35	P774 Metagenomics and metabolomics of patients with inflammatory bowel disease and their unaffected relatives. Journal of Crohn's and Colitis, 2017, 11, S476-S477.	1.3	1
36	Water activity does not shape the microbiota in the human colon. Gut, 2017, 66, 1865-1866.	12.1	9

GWEN FALONY

#	Article	IF	CITATIONS
37	Quantitative microbiome profiling links gut community variation to microbial load. Nature, 2017, 551, 507-511.	27.8	791
38	P767 The FIT trial: anti-inflammatory dietary intervention effects on the intestinal microbiota. Journal of Crohn's and Colitis, 2017, 11, S473-S473.	1.3	1
39	Practical considerations for large-scale gut microbiome studies. FEMS Microbiology Reviews, 2017, 41, S154-S167.	8.6	142
40	The Probiotic Butyricicoccus pullicaecorum Reduces Feed Conversion and Protects from Potentially Harmful Intestinal Microorganisms and Necrotic Enteritis in Broilers. Frontiers in Microbiology, 2016, 7, 1416.	3.5	99
41	Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults. PLoS ONE, 2016, 11, e0153294.	2.5	70
42	Long-Term Effect of Erythritol on Dental Caries Development during Childhood: A Posttreatment Survival Analysis. Caries Research, 2016, 50, 579-588.	2.0	35
43	Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut, 2016, 65, 1681-1689.	12.1	312
44	Tu1713 Host-Microbiome Interactions in Primary Sclerosing Cholangitis. Gastroenterology, 2016, 150, S927-S928.	1.3	0
45	Su1909 Genetic Risk for Crohn's Disease has Little Impact on Intestinal Microbiota Composition. Gastroenterology, 2016, 150, S585-S586.	1.3	0
46	Towards biome-specific analysis of meta-omics data. ISME Journal, 2016, 10, 1025-1028.	9.8	72
47	Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science, 2016, 352, 565-569.	12.6	1,398
48	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
49	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	27.8	1,506
50	Species–function relationships shape ecological properties of the human gut microbiome. Nature Microbiology, 2016, 1, 16088.	13.3	279
51	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	1.3	37
52	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	12.1	737
53	Perspectives and pitfalls of microbiome research through home based fecal sampling: the Flemish Gut Flora Project experience. Archives of Public Health, 2015, 73, .	2.4	1
54	Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25–3T studied in an in vitro gut model. FEMS Microbiology Ecology, 2015, 91, .	2.7	50

GWEN FALONY

#	Article	IF	CITATIONS
55	Microbiology Meets Big Data: The Case of Gut Microbiota–Derived Trimethylamine. Annual Review of Microbiology, 2015, 69, 305-321.	7.3	133
56	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	27.8	1,627
57	Effect of Erythritol and Xylitol on Dental Caries Prevention in Children. Caries Research, 2014, 48, 482-490.	2.0	51
58	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
59	A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60.	27.8	5,345
60	Species Diversity, Community Dynamics, and Metabolite Kinetics of the Microbiota Associated with Traditional Ecuadorian Spontaneous Cocoa Bean Fermentations. Applied and Environmental Microbiology, 2011, 77, 7698-7714.	3.1	128
61	Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiology, 2011, 28, 964-973.	4.2	93
62	The prebiotic, oligofructoseâ€enriched inulin modulates the faecal metabolite profile: An <i>in vitro</i> analysis. Molecular Nutrition and Food Research, 2010, 54, 1791-1801.	3.3	44
63	In Vitro Kinetic Analysis of Fermentation of Prebiotic Inulin-Type Fructans by <i>Bifidobacterium</i> Species Reveals Four Different Phenotypes. Applied and Environmental Microbiology, 2009, 75, 454-461.	3.1	106
64	In Vitro Kinetics of Prebiotic Inulin-Type Fructan Fermentation by Butyrate-Producing Colon Bacteria: Implementation of Online Gas Chromatography for Quantitative Analysis of Carbon Dioxide and Hydrogen Gas Production. Applied and Environmental Microbiology, 2009, 75, 5884-5892.	3.1	73
65	Coculture Fermentations of <i>Bifidobacterium</i> Species and <i>Bacteroides thetaiotaomicron</i> Reveal a Mechanistic Insight into the Prebiotic Effect of Inulin-Type Fructans. Applied and Environmental Microbiology, 2009, 75, 2312-2319.	3.1	99
66	Volatile analysis of spoiled, artisan-type, modified-atmosphere-packaged cooked ham stored under different temperatures. Food Microbiology, 2009, 26, 94-102.	4.2	76
67	Ecological Interactions of Bacteria in the Human Gut. , 2009, , 639-679.		6
68	Probiotics in fermented sausages. Meat Science, 2008, 80, 75-78.	5.5	141
69	Latest Developments in Probiotics. , 2008, , 217-229.		12
70	Letter to the Editor. Journal of Applied Microbiology, 2006, 100, 1388-1389.	3.1	8
71	Cross-Feeding between <i>Bifidobacterium longum</i> BB536 and Acetate-Converting, Butyrate-Producing Colon Bacteria during Growth on Oligofructose. Applied and Environmental Microbiology, 2006, 72, 7835-7841.	3.1	296