Mari Kono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352762/publications.pdf Version: 2024-02-01

MARKONO

#	Article	IF	CITATIONS
1	Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3445-3449.	7.1	487
2	The Sphingosine-1-phosphate Receptors S1P1, S1P2, and S1P3 Function Coordinately during Embryonic Angiogenesis. Journal of Biological Chemistry, 2004, 279, 29367-29373.	3.4	358
3	HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P ₁ to limit vascular inflammation. Science Signaling, 2015, 8, ra79.	3.6	254
4	Mice Expressing Only Monosialoganglioside GM3 Exhibit Lethal Audiogenic Seizures. Journal of Biological Chemistry, 2001, 276, 6885-6888.	3.4	218
5	HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015, 523, 342-346.	27.8	192
6	Deafness and Stria Vascularis Defects in S1P2 Receptor-null Mice. Journal of Biological Chemistry, 2007, 282, 10690-10696.	3.4	159
7	Mouse β-galactoside α2,3-sialyltransferases: comparison of in vitro substrate specificities and tissue specific expression. Glycobiology, 1997, 7, 469-479.	2.5	148
8	Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. International Journal of Biological Sciences, 2007, 3, 120-128.	6.4	146
9	Neutral Ceramidase Encoded by the Asah2 Gene Is Essential for the Intestinal Degradation of Sphingolipids. Journal of Biological Chemistry, 2006, 281, 7324-7331.	3.4	135
10	Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. Journal of Clinical Investigation, 2002, 109, 1215-1221.	8.2	114
11	Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. Journal of Clinical Investigation, 2014, 124, 2076-2086.	8.2	80
12	Molecular Cloning and Functional Expression of Two Members of Mouse NeuAcα2,3Galβ1,3GalNAc GalNAcα2,6-Sialyltransferase Family, ST6GalNAc III and IV. Journal of Biological Chemistry, 1999, 274, 11958-11967.	3.4	74
13	Molecular Cloning and Functional Expression of a Fifth-Type α2,3-sialyltransferase (mST3Gal V: GM3) Tj ETQq1 🛛	1 0.784314 2.1	1 rgBT /Over 72
14	Endothelial S1P ₁ Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circulation Research, 2021, 128, 363-382.	4.5	71
15	Molecular Cloning and Expression of a Fifth Type of α2,8-Sialyltransferase (ST8Sia V). Journal of Biological Chemistry, 1996, 271, 29366-29371.	3.4	70
16	Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. Journal of Clinical Investigation, 2016, 126, 4088-4102.	8.2	56
17	Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1582-1598.	8.5	54
18	Biosynthesis and Expression of Polysialic Acid on the Neural Cell Adhesion Molecule Is Predominantly Directed by ST8Sia II/STX during in Vitro Neuronal Differentiation. Journal of Biological Chemistry, 1996, 271, 22058-22062.	3.4	53

Mari Kono

#	Article	IF	CITATIONS
19	Sphingosine-1-phosphate regulation of mammalian development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 435-441.	2.4	53
20	The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. ELife, 2019, 8, .	6.0	52
21	A novel glycosyltransferase with a polyglutamine repeat; a new candidate for GD1α synthase (ST6GalNAc V)1. FEBS Letters, 1999, 463, 92-96.	2.8	42
22	Autophagy regulates sphingolipid levels in the liver. Journal of Lipid Research, 2014, 55, 2521-2531.	4.2	42
23	Redefined Substrate Specificity of ST6GalNAc II: A Second Candidate Sialyl-Tn Synthase. Biochemical and Biophysical Research Communications, 2000, 272, 94-97.	2.1	38
24	Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. ELife, 2020, 9, .	6.0	34
25	Bioluminescence imaging of G protein-coupled receptor activation in living mice. Nature Communications, 2017, 8, 1163.	12.8	32
26	Genomic Organization and Transcriptional Regulation of the Mouse GD3 Synthase Gene (ST8Sia I): Comparison of Genomic Organization of the Mouse Sialyltransferase Genes. Journal of Biochemistry, 2000, 128, 1033-1043.	1.7	24
27	A genome-wide CRISPR/Cas9 screen reveals that the aryl hydrocarbon receptor stimulates sphingolipid levels. Journal of Biological Chemistry, 2020, 295, 4341-4349.	3.4	24
28	Cloning and potential utility of porcine Fas ligand: overexpression in porcine endothelial cells protects them from attack by human cytolytic cells. Xenotransplantation, 2002, 9, 410-421.	2.8	17
29	Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cellular Signalling, 2021, 78, 109879.	3.6	16
30	Identification and Functional Characterization of a Human GalNAc α2,6-Sialyltransferase with Altered Expression in Breast Cancer. Molecular Medicine, 2002, 8, 42-55.	4.4	14
31	Murine platelet production is suppressed by S1P release in the hematopoietic niche, not facilitated by blood S1P sensing. Blood Advances, 2019, 3, 1702-1713.	5.2	14
32	Imaging S1P1 activation in vivo. Experimental Cell Research, 2015, 333, 178-182.	2.6	11
33	Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis. Journal of Biochemistry, 2012, 151, 197-203.	1.7	10
34	Two Distinct Long-Chain-Acyl-CoA Synthetases in Guinea Pig Harderian Gland. FEBS Journal, 1996, 238, 104-111.	0.2	8
35	Two Pathways for GM2(NeuGc) Expression in Mice: Genetic Analysis1. Journal of Biochemistry, 1991, 109, 132-136.	1.7	4
36	Identification of two lipid phosphatases that regulate sphingosine-1-phosphate cellular uptake and recycling. Journal of Lipid Research, 2022, 63, 100225.	4.2	4

#	Article	IF	CITATIONS
37	In vitro Aflatoxin B1-DNA Binding by Microsomes and Its Modulation by Cytosol: Comparison of Various Mammalian and Avian Livers in Relation to Species Difference in Susceptibility. Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan, 1995, 36, 365-374_1.	0.2	3
38	In vitro microsome-mediated aflatoxin B1-DNA binding and its inhibition by cytosol of various organs of the hamster and quail. Mycopathologia, 1995, 132, 117-119.	3.1	3
39	ST8Sia-V (SAT-V/SAT-III). , 2002, , 347-351.		0