Marek Czosnyka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8352442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurology, The, 2017, 16, 987-1048.	4.9	1,571
2	Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. New England Journal of Medicine, 2016, 375, 1119-1130.	13.9	901
3	Continuous Assessment of the Cerebral Vasomotor Reactivity in Head Injury. Neurosurgery, 1997, 41, 11-19.	0.6	732
4	Continuous Assessment of Cerebral Autoregulation With Near-Infrared Spectroscopy in Adults After Subarachnoid Hemorrhage. Stroke, 2010, 41, 1963-1968.	1.0	673
5	Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Critical Care Medicine, 2002, 30, 733-738.	0.4	646
6	Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 813-821.	0.9	613
7	Monitoring of Cerebral Autoregulation in Head-Injured Patients. Stroke, 1996, 27, 1829-1834.	1.0	448
8	Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury*. Critical Care Medicine, 2012, 40, 2456-2463.	0.4	447
9	Effects of Acute Treatment With Pravastatin on Cerebral Vasospasm, Autoregulation, and Delayed Ischemic Deficits After Aneurysmal Subarachnoid Hemorrhage. Stroke, 2005, 36, 1627-1632.	1.0	422
10	Real-Time Continuous Monitoring of Cerebral Blood Flow Autoregulation Using Near-Infrared Spectroscopy in Patients Undergoing Cardiopulmonary Bypass. Stroke, 2010, 41, 1951-1956.	1.0	357
11	Critical Thresholds for Cerebrovascular Reactivity After Traumatic Brain Injury. Neurocritical Care, 2012, 16, 258-266.	1.2	339
12	Consensus Summary Statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care. Neurocritical Care, 2014, 21, 1-26.	1.2	339
13	Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain, 2011, 134, 484-494.	3.7	326
14	Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing Links. Neurocritical Care, 2009, 10, 373-386.	1.2	303
15	Continuous Time-Domain Analysis of Cerebrovascular Autoregulation Using Near-Infrared Spectroscopy. Stroke, 2007, 38, 2818-2825.	1.0	300
16	Impact of Intracranial Pressure and Cerebral Perfusion Pressure on Severe Disability and Mortality After Head Injury. Neurocritical Care, 2006, 4, 008-013.	1.2	298
17	Cerebrovascular Reactivity Measured by Near-Infrared Spectroscopy. Stroke, 2009, 40, 1820-1826.	1.0	269
18	Cerebral autoregulation following head injury. Journal of Neurosurgery, 2001, 95, 756-763.	0.9	266

#	Article	IF	CITATIONS
19	Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Medicine, 2015, 41, 1517-1528.	3.9	263
20	Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care. Intensive Care Medicine, 2014, 40, 1189-1209.	3.9	258
21	Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Medicine, 2018, 44, 1284-1294.	3.9	250
22	Transcranial Doppler Pulsatility Index: What it is and What it Isn't. Neurocritical Care, 2012, 17, 58-66.	1.2	227
23	Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. Journal of Neurosurgery, 1998, 88, 802-808.	0.9	214
24	Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain, 2004, 127, 965-972.	3.7	212
25	Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. Journal of Neurosurgery, 2008, 108, 66-73.	0.9	207
26	The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1343-1353.	0.9	206
27	Impairment of Cerebral Autoregulation Predicts Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Stroke, 2012, 43, 3230-3237.	1.0	202
28	Assessment of Cerebrovascular Autoregulation in Head-Injured Patients. Stroke, 2003, 34, 2404-2409.	1.0	176
29	Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Medicine, 2017, 14, e1002356.	3.9	174
30	Predictive value of Glasgow Coma Scale after brain trauma: change in trend over the past ten years. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 161-2.	0.9	174
31	Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurgical Focus, 2008, 25, E2.	1.0	173
32	Cerebrospinal fluid dynamics. Physiological Measurement, 2004, 25, R51-R76.	1.2	172
33	Near-Infrared Spectroscopy can Monitor Dynamic Cerebral Autoregulation in Adults. Neurocritical Care, 2009, 10, 122-128.	1.2	171
34	Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. Journal of Neurosurgery, 1996, 84, 79-84.	0.9	169
35	Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. British Journal of Neurosurgery, 2001, 15, 500-507.	0.4	167
36	Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible?. Neurocritical Care, 2016, 25, 473-491.	1.2	165

Marek Czosnyka

#	Article	IF	CITATIONS
37	Age, intracranial pressure, autoregulation, and outcome after brain trauma. Journal of Neurosurgery, 2005, 102, 450-454.	0.9	163
38	Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nature Reviews Neurology, 2013, 9, 152-163.	4.9	162
39	Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer's disease: a pilot study. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 67, 723-732.	0.9	160
40	Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. Journal of Neurosurgery, 2006, 104, 731-737.	0.9	152
41	Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?. Acta Neurochirurgica, 2004, 146, 131-141.	0.9	151
42	Impaired Autoregulation of Cerebral Blood Flow During Rewarming from Hypothermic Cardiopulmonary Bypass and Its Potential Association with Stroke. Anesthesia and Analgesia, 2010, 110, 321-328.	1.1	147
43	Near-infrared spectroscopy use in patients with head injury. Journal of Neurosurgery, 1995, 83, 963-970.	0.9	146
44	Regulation of the cerebral circulation: bedside assessment and clinical implications. Critical Care, 2016, 20, 129.	2.5	146
45	Significance of intracranial pressure waveform analysis after head injury. Acta Neurochirurgica, 1996, 138, 531-542.	0.9	144
46	Consensus statement from the International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury. Acta Neurochirurgica, 2019, 161, 1261-1274.	0.9	143
47	Noninvasive Monitoring of Cerebrovascular Reactivity with Near Infrared Spectroscopy in Head-Injured Patients. Journal of Neurotrauma, 2010, 27, 1951-1958.	1.7	142
48	Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Medicine, 2014, 40, 1267-1274.	3.9	141
49	Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 721-731.	0.9	140
50	Monitoring of Spinal Cord Perfusion Pressure in Acute Spinal Cord Injury. Critical Care Medicine, 2014, 42, 646-655.	0.4	140
51	Dynamic Cerebral Autoregulation in Acute Ischemic Stroke Assessed From Spontaneous Blood Pressure Fluctuations. Stroke, 2005, 36, 1684-1689.	1.0	135
52	Reliability of the Blood Flow Velocity Pulsatility Index for Assessment of Intracranial and Cerebral Perfusion Pressures in Head-Injured Patients. Neurosurgery, 2012, 71, 853-861.	0.6	134
53	Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurologica Scandinavica, 2012, 125, 156-162.	1.0	133
54	Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review. Intensive Care Medicine, 2019, 45, 913-927.	3.9	132

#	Article	IF	CITATIONS
55	Normal Pressure Hydrocephalus and Cerebral Blood Flow: A PET Study of Baseline Values. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 17-23.	2.4	129
56	Cerebral Autoregulation in Carotid Artery Occlusive Disease Assessed From Spontaneous Blood Pressure Fluctuations by the Correlation Coefficient Index. Stroke, 2003, 34, 2138-2144.	1.0	126
57	Assessment of Cerebral Autoregulation Using Carotid Artery Compression. Stroke, 1996, 27, 2197-2203.	1.0	126
58	Continuous Assessment of Cerebral Autoregulation in Subarachnoid Hemorrhage. Anesthesia and Analgesia, 2004, 98, 1133-1139.	1.1	123
59	Continuous Monitoring of Cerebrovascular Pressure Reactivity After Traumatic Brain Injury in Children. Pediatrics, 2009, 124, e1205-e1212.	1.0	122
60	Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. Journal of Neurosurgery, 2014, 120, 893-900.	0.9	121
61	A Phase-Contrast MRI Study of Physiologic Cerebral Venous Flow. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1208-1215.	2.4	119
62	Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study Journal of Neurology, Neurosurgery and Psychiatry, 1996, 60, 549-558.	0.9	116
63	Evaluation of the transient hyperemic response test in head-injured patients. Journal of Neurosurgery, 1997, 86, 773-778.	0.9	116
64	Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure, and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury: Injured Spinal Cord Pressure Evaluation Study. Journal of Neurotrauma, 2015, 32, 865-874.	1.7	116
65	Individualizing Thresholds of Cerebral Perfusion Pressure Using Estimated Limits of Autoregulation. Critical Care Medicine, 2017, 45, 1464-1471.	0.4	116
66	Adaptive Noninvasive Assessment of Intracranial Pressure and Cerebral Autoregulation. Stroke, 2003, 34, 84-89.	1.0	115
67	Critical Thresholds for Transcranial Doppler Indices of Cerebral Autoregulation in Traumatic Brain Injury. Neurocritical Care, 2011, 14, 188-193.	1.2	115
68	Can Cerebrovascular Reactivity Be Measured With Near-Infrared Spectroscopy?. Stroke, 1995, 26, 2285-2292.	1.0	115
69	Impaired cerebral autoregulation: measurement and application to stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 520-531.	0.9	114
70	Cerebrovascular reactivity during hypothermia and rewarming. British Journal of Anaesthesia, 2007, 99, 237-244.	1.5	112
71	The Relationship Between Cerebral Blood Flow Autoregulation and Cerebrovascular Pressure Reactivity After Traumatic Brain Injury. Neurosurgery, 2012, 71, 652-661.	0.6	111
72	Continuous monitoring of cerebrovascular autoregulation: a validation study. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 583-586.	0.9	110

#	Article	IF	CITATIONS
73	Assessment of cerebrospinal fluid outflow resistance. Medical and Biological Engineering and Computing, 2007, 45, 719-735.	1.6	108
74	Laboratory Testing of Three Intracranical Pressure Microtransducers: Technical Report. Neurosurgery, 1996, 38, 219-224.	0.6	107
75	Non-invasive assessment of intracranial pressure. Acta Neurologica Scandinavica, 2016, 134, 4-21.	1.0	107
76	Management of raised intracranial pressure Journal of Neurology, Neurosurgery and Psychiatry, 1993, 56, 845-858.	0.9	104
77	Positron Emission Tomographic Cerebral Perfusion Disturbances and Transcranial Doppler Findings among Patients with Neurological Deterioration after Subarachnoid Hemorrhage. Neurosurgery, 2003, 52, 1017-1024.	0.6	104
78	Monitoring of Cerebral Autoregulation. Neurocritical Care, 2014, 21, 95-102.	1.2	104
79	The Surgical Approach to the Management of Increased Intracranial Pressure After Traumatic Brain Injury. Anesthesia and Analgesia, 2010, 111, 736-748.	1.1	103
80	Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study. Neurocritical Care, 2015, 23, 92-102.	1.2	103
81	Neonatal cerebrovascular autoregulation. Pediatric Research, 2018, 84, 602-610.	1.1	103
82	Posture-related Overdrainage: Comparison of the Performance of 10 Hydrocephalus Shunts in Vitro. Neurosurgery, 1998, 42, 327-334.	0.6	102
83	ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochirurgica Supplementum, 2005, 95, 43-49.	0.5	102
84	Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury*. Critical Care Medicine, 2003, 31, 267-271.	0.4	99
85	Intracranial Pressure: More Than a Number. Neurosurgical Focus, 2007, 22, 1-7.	1.0	99
86	The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest*. Critical Care Medicine, 2019, 47, 960-969.	0.4	97
87	Hemodynamic characterization of intracranial pressure plateau waves in head-injured patients. Journal of Neurosurgery, 1999, 91, 11-19.	0.9	95
88	Age dependence of cerebrospinal pressure—volume compensation in patients with hydrocephalus. Journal of Neurosurgery, 2001, 94, 482-486.	0.9	94
89	Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open, 2019, 9, e030727.	0.8	94
90	Model-Based Noninvasive Estimation of Intracranial Pressure from Cerebral Blood Flow Velocity and Arterial Pressure. Science Translational Medicine, 2012, 4, 129ra44.	5.8	92

#	Article	IF	CITATIONS
91	Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis. Neurosurgery, 2019, 85, E75-E82.	0.6	92
92	Continuous Monitoring of Cerebrovascular Reactivity Using Pulse Waveform of Intracranial Pressure. Neurocritical Care, 2012, 17, 67-76.	1.2	91
93	Decompressive craniectomy following traumatic brain injury: developing the evidence base. British Journal of Neurosurgery, 2016, 30, 246-250.	0.4	91
94	Clinical Evaluation of Near-Infrared Spectroscopy for Testing Cerebrovascular Reactivity in Patients With Carotid Artery Disease. Stroke, 1997, 28, 331-338.	1.0	89
95	Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. Journal of Neurotrauma, 2021, 38, 2790-2800.	1.7	88
96	Critical closing pressure in cerebrovascular circulation. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 66, 606-611.	0.9	86
97	Effect of Carotid Endarterectomy or Stenting on Impairment of Dynamic Cerebral Autoregulation. Stroke, 2004, 35, 1381-1387.	1.0	85
98	What Shapes Pulse Amplitude of Intracranial Pressure?. Journal of Neurotrauma, 2010, 27, 317-324.	1.7	84
99	Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal?. Neurocritical Care, 2012, 17, 211-218.	1.2	84
100	Cerebral Perfusion Pressure Targets Individualized to Pressure-Reactivity Index in Moderate to Severe Traumatic Brain Injury: A Systematic Review. Journal of Neurotrauma, 2017, 34, 963-970.	1.7	84
101	The Continuous Assessment of Cerebrovascular Reactivity: A Validation of the Method in Healthy Volunteers. Anesthesia and Analgesia, 1999, 89, 944.	1.1	83
102	Transcranial Doppler: a stethoscope for the brainâ€neurocritical care use. Journal of Neuroscience Research, 2018, 96, 720-730.	1.3	83
103	Cerebral Autoregulation after Subarachnoid Hemorrhage: Comparison of Three Methods. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 449-456.	2.4	82
104	Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. British Journal of Anaesthesia, 2016, 117, 783-791.	1.5	81
105	Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Medicine, 2010, 36, 264-271.	3.9	80
106	Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. Journal of Perinatology, 2011, 31, 722-729.	0.9	80
107	The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: Evidentiary Tables. Neurocritical Care, 2014, 21, 297-361.	1.2	80
108	Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochirurgica, 1992, 119, 12-16.	0.9	77

#	Article	IF	CITATIONS
109	Critical Thresholds of Intracranial Pressure-Derived Continuous Cerebrovascular Reactivity Indices for Outcome Prediction in Noncraniectomized Patients with Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1107-1115.	1.7	77
110	Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 198-204.	0.9	75
111	An Assessment of Dynamic Autoregulation from Spontaneous Fluctuations of Cerebral Blood Flow Velocity: A Comparison of Two Models, Index of Autoregulation and Mean Flow Index. Anesthesia and Analgesia, 2008, 106, 234-239.	1.1	74
112	Interaction between Brain Chemistry and Physiology after Traumatic Brain Injury: Impact of Autoregulation and Microdialysis Catheter Location. Journal of Neurotrauma, 2011, 28, 849-860.	1.7	74
113	Prospective Study on Noninvasive Assessment of Intracranial Pressure in Traumatic Brain-Injured Patients: Comparison of Four Methods. Journal of Neurotrauma, 2016, 33, 792-802.	1.7	74
114	Predictors of Outcome With Cerebral Autoregulation Monitoring: A Systematic Review and Meta-Analysis. Critical Care Medicine, 2017, 45, 695-704.	0.4	74
115	Computer supported multimodal bed-side monitoring for neuro intensive care. Journal of Clinical Monitoring and Computing, 1994, 11, 223-232.	0.3	73
116	Nonlinear Assessment of Cerebral Autoregulation from Spontaneous Blood Pressure and Cerebral Blood Flow Fluctuations. Cardiovascular Engineering (Dordrecht, Netherlands), 2008, 8, 60-71.	1.0	73
117	INDEX OF CEREBROSPINAL COMPENSATORY RESERVE IN HYDROCEPHALUS. Neurosurgery, 2009, 64, 494-502.	0.6	73
118	Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain, 2012, 135, 2399-2408.	3.7	73
119	Monitoring and interpretation of intracranial pressure after head injury. , 2006, 96, 114-118.		73
120	The frequency response of cerebral autoregulation. Journal of Applied Physiology, 2013, 115, 52-56.	1.2	72
121	Responses of Posttraumatic Pericontusional Cerebral Blood Flow and Blood Volume to an Increase in Cerebral Perfusion Pressure. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1371-1377.	2.4	71
122	Critical Closing Pressure Determined with a Model of Cerebrovascular Impedance. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 235-243.	2.4	71
123	The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A List of Recommendations and Additional Conclusions. Neurocritical Care, 2014, 21, 282-296.	1.2	71
124	A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochirurgica, 1990, 105, 112-116.	0.9	70
125	Renovascular reactivity measured by near-infrared spectroscopy. Journal of Applied Physiology, 2012, 113, 307-314.	1.2	70
126	Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Review of Neurotherapeutics, 2015, 15, 169-185.	1.4	70

#	Article	IF	CITATIONS
127	Cerebral autoregulation in patients with obstructive sleep apnea syndrome during wakefulness. European Journal of Neurology, 2009, 16, 386-391.	1.7	69
128	Comparison of Frequency and Time Domain Methods of Assessment of Cerebral Autoregulation in Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 248-256.	2.4	69
129	Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Medical Engineering and Physics, 2014, 36, 638-645.	0.8	68
130	Continuous Autoregulatory Indices Derived from Multi-Modal Monitoring: Each One Is Not Like the Other. Journal of Neurotrauma, 2017, 34, 3070-3080.	1.7	67
131	Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part II: A Scoping Review of Continuous Methods. Journal of Neurotrauma, 2017, 34, 3224-3237.	1.7	67
132	Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 765-770.	0.9	66
133	Asymmetry of pressure autoregulation after traumatic brain injury. Journal of Neurosurgery, 2003, 99, 991-998.	0.9	66
134	Value of Overnight Monitoring of Intracranial Pressure in Hydrocephalic Children. Pediatric Neurosurgery, 2008, 44, 269-279.	0.4	66
135	Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease. Journal of Neurology, 2008, 255, 1182-1189.	1.8	65
136	Continuous Monitoring of Cerebrovascular Pressure-Reactivity in Head Injury. , 1998, 71, 74-77.		64
137	The hyperaemic response to a transient reduction in cerebral perfusion pressure. Acta Neurochirurgica, 1992, 115, 90-97.	0.9	63
138	Computerised transient hyperaemic response test—A method for the assessment of cerebral autoregulation. Ultrasound in Medicine and Biology, 1995, 21, 599-611.	0.7	63
139	Early Effects of Mannitol in Patients with Head Injuries Assessed Using Bedside Multimodality Monitoring. Neurosurgery, 1996, 39, 714-721.	0.6	63
140	Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study. Resuscitation, 2016, 106, 120-125.	1.3	63
141	Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Review of Neurotherapeutics, 2017, 17, 801-818.	1.4	63
142	Elastance Correlates with Outcome after Endoscopic Third Ventriculostomy in Adults with Hydrocephalus Caused by Primary Aqueductal Stenosis. Neurosurgery, 2002, 50, 70-77.	0.6	62
143	"Optimal Cerebral Perfusion Pressure―in Poor Grade Patients After Subarachnoid Hemorrhage. Neurocritical Care, 2010, 13, 17-23.	1.2	62
144	Experimental Aspects of Cerebrospinal Hemodynamics. Neurosurgery, 1992, 31, 705-710.	0.6	62

#	Article	IF	CITATIONS
145	The Effects of Large-Dose Propofol on Cerebrovascular Pressure Autoregulation in Head-Injured Patients. Anesthesia and Analgesia, 2003, 97, 572-576.	1.1	61
146	Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study. Critical Care Medicine, 2016, 44, 1173-1181.	0.4	61
147	Analysis of intracranial pressure waveform during infusion test. Acta Neurochirurgica, 1988, 93, 140-145.	0.9	59
148	Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory Journal of Neurology, Neurosurgery and Psychiatry, 1997, 62, 43-50.	0.9	59
149	Changes in Cerebral Blood Flow during Cerebrospinal Fluid Pressure Manipulation in Patients with Normal Pressure Hydrocephalus: A Methodological Study. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 579-587.	2.4	59
150	Plateau Waves in Head Injured Patients Requiring Neurocritical Care. Neurocritical Care, 2009, 11, 143-150.	1.2	59
151	Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Medicine, 2017, 14, e1002353.	3.9	59
152	Predictive value of initial clinical status, intracranial pressure and transcranial Doppler pulsatility after subarachnoid haemorrhage. Acta Neurochirurgica, 2007, 149, 575-583.	0.9	58
153	The monitoring of relative changes in compartmental compliances of brain. Physiological Measurement, 2009, 30, 647-659.	1.2	58
154	The Limitations of Near-Infrared Spectroscopy to Assess Cerebrovascular Reactivity. Anesthesia and Analgesia, 2011, 113, 849-857.	1.1	58
155	What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury. British Journal of Anaesthesia, 2012, 108, 89-99.	1.5	58
156	Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. Journal of Neurosurgery: Spine, 2015, 23, 763-771.	0.9	58
157	Impact of duration and magnitude of raised intracranial pressure on outcome after severe traumatic brain injury: A CENTER-TBI high-resolution group study. PLoS ONE, 2020, 15, e0243427.	1.1	58
158	Enhancement of cerebral blood flow using systemic hypertonic saline therapy improves outcome in patients with poor-grade spontaneous subarachnoid hemorrhage. Journal of Neurosurgery, 2007, 107, 274-282.	0.9	57
159	Cerebral Autoregulation among Patients with Symptoms of Hydrocephalus. Neurosurgery, 2002, 50, 526-533.	0.6	56
160	Prediction of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage Using Cerebral Blood Flow Velocities and Cerebral Autoregulation Assessment. Neurocritical Care, 2015, 23, 253-258.	1.2	56
161	Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study. Acta Neurochirurgica, 2019, 161, 1217-1227.	0.9	56
162	Imaging normal pressure hydrocephalus: theories, techniques, and challenges. Neurosurgical Focus, 2016, 41, E11.	1.0	55

#	Article	IF	CITATIONS
163	Effects of Prone Position and Positive End-Expiratory Pressure on Noninvasive Estimators of ICP: A Pilot Study. Journal of Neurosurgical Anesthesiology, 2017, 29, 243-250.	0.6	55
164	Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury*. Pediatric Critical Care Medicine, 2015, 16, 739-749.	0.2	54
165	Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Acta Neurologica Scandinavica, 2011, 124, 85-98.	1.0	53
166	Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure–flow relation: The CARNet study. Medical Engineering and Physics, 2014, 36, 620-627.	0.8	53
167	A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochirurgica, 2017, 159, 2245-2273.	0.9	53
168	Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. British Journal of Anaesthesia, 2020, 124, 440-453.	1.5	53
169	Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury Journal of Neurology, Neurosurgery and Psychiatry, 1994, 57, 1382-1388.	0.9	52
170	Continuous Monitoring of the Monro-Kellie Doctrine: Is It Possible?. Journal of Neurotrauma, 2012, 29, 1354-1363.	1.7	52
171	Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation. Acta Neurologica Scandinavica, 2016, 134, 168-180.	1.0	52
172	A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation, 2019, 137, 221-228.	1.3	52
173	Coupling of sagittal sinus pressure and cerebrospinal fluid pressure in idiopathic intracranial hypertension – a preliminary report. Acta Neurochirurgica Supplementum, 2008, 102, 283-285.	0.5	52
174	Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochirurgica, 1994, 126, 113-119.	0.9	51
175	Laboratory Testing of Hydrocephalus Shunts – Conclusion of the U.K. Shunt Evaluation Programme. Acta Neurochirurgica, 2002, 144, 525-538.	0.9	51
176	Ventriculostomy for control of raised ICP in acute traumatic brain injury. Acta Neurochirurgica Supplementum, 2008, 102, 99-104.	0.5	51
177	Noninvasive Autoregulation Monitoring in a Swine Model of Pediatric Cardiac Arrest. Anesthesia and Analgesia, 2012, 114, 825-836.	1.1	51
178	Intracranial pressure monitoring in severe traumatic brain injury. BMJ, The, 2013, 346, f1000-f1000.	3.0	50
179	Monitoring of Cerebrovascular Reactivity for Determination of Optimal Blood Pressure in Preterm Infants. Journal of Pediatrics, 2015, 167, 86-91.	0.9	50
180	A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. Journal of Neurosurgery, 2015, 123, 638-648.	0.9	50

#	Article	IF	CITATIONS
181	Pressure reactivity index: journey through the past 20Âyears. Acta Neurochirurgica, 2017, 159, 2063-2065.	0.9	50
182	Comparison of Performance of Different Optimal Cerebral Perfusion Pressure Parameters for Outcome Prediction in Adult Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. Journal of Neurotrauma, 2019, 36, 1505-1517.	1.7	50
183	Association between Cerebrovascular Reactivity Monitoring and Mortality Is Preserved When Adjusting for Baseline Admission Characteristics in Adult Traumatic Brain Injury: A CENTER-TBI Study. Journal of Neurotrauma, 2020, 37, 1233-1241.	1.7	50
184	â€~Long' pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochirurgica, 2012, 154, 1575-1581.	0.9	49
185	Optimal cerebral perfusion pressure: are we ready for it?. Neurological Research, 2013, 35, 138-148.	0.6	49
186	Continuous Multimodality Monitoring in Children after Traumatic Brain Injury—Preliminary Experience. PLoS ONE, 2016, 11, e0148817.	1.1	49
187	Associations Between Impaired Cerebral Blood Flow Autoregulation, Cerebral Oxygenation, and Biomarkers of Brain Injury and Postoperative Cognitive Dysfunction in Elderly Patients After Major Noncardiac Surgery. Anesthesia and Analgesia, 2017, 124, 934-942.	1.1	49
188	Sustained moderate reductions in arterial CO2 after brain trauma Time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Medicine, 2004, 30, 2180-2187.	3.9	48
189	Pulsatile Intracranial Pressure and Cerebral Autoregulation After Traumatic Brain Injury. Neurocritical Care, 2011, 15, 379-386.	1.2	48
190	Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: A retrospective study. PLoS Medicine, 2017, 14, e1002348.	3.9	48
191	ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochirurgica Supplementum, 2008, 102, 145-151.	0.5	48
192	Validation of Intracranial Pressure-Derived Cerebrovascular Reactivity Indices against the Lower Limit of Autoregulation, Part II: Experimental Model of Arterial Hypotension. Journal of Neurotrauma, 2018, 35, 2812-2819.	1.7	47
193	Patient-specific ICP Epidemiologic Thresholds in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. Journal of Neurosurgical Anesthesiology, 2021, 33, 28-38.	0.6	47
194	Cerebral Venous Blood Outflow: A Theoretical Model Based on Laboratory Simulation. Neurosurgery, 2001, 49, 1214-1223.	0.6	46
195	Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory. Journal of Neurosurgery, 2014, 120, 697-707.	0.9	46
196	Validation of Pressure Reactivity and Pulse Amplitude Indices against the Lower Limit of Autoregulation, Part I: Experimental Intracranial Hypertension. Journal of Neurotrauma, 2018, 35, 2803-2811.	1.7	46
197	Vascular components of cerebrospinal fluid compensation. Journal of Neurosurgery, 1999, 90, 752-759.	0.9	45
198	The ontogeny of cerebrovascular pressure autoregulation in premature infants. Journal of Perinatology, 2014, 34, 926-931.	0.9	45

#	Article	IF	CITATIONS
199	Systemic, Local, and Imaging Biomarkers of Brain Injury: More Needed, and Better Use of Those Already Established?. Frontiers in Neurology, 2015, 6, 26.	1.1	45
200	Monitoring of Optimal Cerebral Perfusion Pressure in Traumatic Brain Injured Patients Using a Multi-Window Weighting Algorithm. Journal of Neurotrauma, 2017, 34, 3081-3088.	1.7	45
201	Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochirurgica Supplementum, 2005, 95, 25-28.	0.5	45
202	Continuous Monitoring and Visualization of Optimum Spinal Cord Perfusion Pressure in Patients with Acute Cord Injury. Journal of Neurotrauma, 2017, 34, 2941-2949.	1.7	44
203	Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis. Acta Neurochirurgica, 2019, 161, 1955-1964.	0.9	44
204	Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest. Resuscitation, 2019, 141, 96-103.	1.3	44
205	The Continuous Assessment of Cerebrovascular Reactivity: A Validation of the Method in Healthy Volunteers. Anesthesia and Analgesia, 1999, 89, 944.	1.1	43
206	How does CSF dynamics change after shunting?. Acta Neurologica Scandinavica, 2008, 118, 182-188.	1.0	43
207	Multi-Modal Monitoring of Acute Brain Injury. Advances and Technical Standards in Neurosurgery, 2002, 27, 87-134.	0.2	43
208	Multimodal monitoring in neurointensive care Journal of Neurology, Neurosurgery and Psychiatry, 1996, 60, 131-139.	0.9	42
209	Elastance Correlates with Outcome after Endoscopic Third Ventriculostomy in Adults with Hydrocephalus Caused by Primary Aqueductal Stenosis. Neurosurgery, 2002, 50, 70-77.	0.6	42
210	Critical Closing Pressure in Subarachnoid Hemorrhage. Stroke, 2004, 35, 1393-1398.	1.0	42
211	Noninvasive Autoregulation Monitoring with and without Intracranial Pressure in the NaÃ ⁻ ve Piglet Brain. Anesthesia and Analgesia, 2010, 111, 191-195.	1.1	42
212	A Description of a New Continuous Physiological Index in Traumatic Brain Injury Using the Correlation between Pulse Amplitude of Intracranial Pressure and Cerebral Perfusion Pressure. Journal of Neurotrauma, 2018, 35, 963-974.	1.7	42
213	Clinical applications of a non-invasive ICP monitoring method. European Journal of Ultrasound: Official Journal of the European Federation of Societies for Ultrasound in Medicine and Biology, 2002, 16, 37-45.	1.4	41
214	Slow vasogenic fluctuations of intracranial pressure and cerebral near infrared spectroscopy—an observational study. Acta Neurochirurgica, 2010, 152, 1763-1769.	0.9	41
215	Cessation of Diastolic Cerebral Blood Flow Velocity: The Role of Critical Closing Pressure. Neurocritical Care, 2014, 20, 40-48.	1.2	41
216	Model-based Indices Describing Cerebrovascular Dynamics. Neurocritical Care, 2014, 20, 142-157.	1.2	41

13

#	Article	IF	CITATIONS
217	Transcranial Doppler Systolic Flow Index and ICP-Derived Cerebrovascular Reactivity Indices in Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 314-322.	1.7	41
218	Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. British Journal of Neurosurgery, 2004, 18, 56-61.	0.4	40
219	Heart rate passivity of cerebral tissue oxygenation is associated with predictors of poor outcome in preterm infants. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, e374-82.	0.7	40
220	Bilateral Failure of Cerebral Autoregulation is Related to Unfavorable Outcome After Subarachnoid Hemorrhage. Neurocritical Care, 2015, 22, 65-73.	1.2	40
221	Continuous assessment of cerebral autoregulation: clinical and laboratory experience. , 2003, 86, 581-585.		40
222	Communicating Hydrocephalus: The Biomechanics of Progressive Ventricular Enlargement Revisited. , 2002, 81, 59-63.		39
223	Clinical and Physiological Events That Contribute to the Success Rate of Finding "Optimal―Cerebral Perfusion Pressure in Severe Brain Trauma Patients. Critical Care Medicine, 2015, 43, 1952-1963.	0.4	38
224	Principles of intracranial pressure monitoring and treatment. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 140, 67-89.	1.0	38
225	Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods. Journal of Neurotrauma, 2017, 34, 3207-3223.	1.7	38
226	Monitoring of Intracranial Compliance: Correction for a Change in Body Position. Acta Neurochirurgica, 1999, 141, 31-36.	0.9	37
227	Analysis of intracranial pressure during and after the infusion test in patients with communicating hydrocephalus. Physiological Measurement, 2005, 26, 1039-1048.	1.2	37
228	Cerebral Autoregulatory Response Depends on the Direction of Change in Perfusion Pressure. Journal of Neurotrauma, 2009, 26, 651-656.	1.7	37
229	The Effect of Red Blood Cell Transfusion on Cerebral Autoregulation in Patients with Severe Traumatic Brain Injury. Neurocritical Care, 2015, 23, 210-216.	1.2	37
230	CO2 cerebrovascular reactivity as a function of perfusion pressure — a modelling study. Acta Neurochirurgica, 1993, 121, 159-165.	0.9	36
231	Reactivity of Brain Tissue Oxygen to Change in Cerebral Perfusion Pressure in Head Injured Patients. Neurocritical Care, 2009, 10, 274-279.	1.2	36
232	Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. Journal of Applied Physiology, 2012, 113, 1362-1368.	1.2	36
233	Kidney-Brain Link in Traumatic Brain Injury Patients? A preliminary report. Neurocritical Care, 2015, 22, 192-201.	1.2	36
234	Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. Journal of Neurosurgery, 2015, 122, 588-594.	0.9	36

#	Article	IF	CITATIONS
235	Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. Journal of Clinical Monitoring and Computing, 2016, 30, 255-264.	0.7	36
236	Shunt Testing in-Vivo: A Method Based on the Data from the UK Shunt Evaluation Laboratory. , 2002, 81, 27-30.		36
237	Assessment of Cerebral Autoregulation with Ultrasound and Laser Doppler Wave FormsAn Experimental Study in Anesthetized Rabbits. Neurosurgery, 1994, 35, 287-293.	0.6	35
238	Association between intracranial, arterial pulse pressure amplitudes and cerebral autoregulation in head injury patients. Neurological Research, 2007, 29, 578-582.	0.6	35
239	Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation. British Journal of Anaesthesia, 2011, 107, 742-748.	1.5	35
240	Low-frequency sampling for PRx calculation does not reduce prognostication and produces similar CPPopt in intracerebral haemorrhage patients. Acta Neurochirurgica, 2011, 153, 2189-2195.	0.9	35
241	Post-Traumatic Multimodal Brain Monitoring: Response to Hypertonic Saline. Journal of Neurotrauma, 2014, 31, 1872-1880.	1.7	35
242	Non-invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. Acta Neurochirurgica Supplementum, 2018, 126, 69-73.	0.5	35
243	Compensatory-Reserve-Weighted Intracranial Pressure and Its Association with Outcome After Traumatic Brain Injury. Neurocritical Care, 2018, 28, 212-220.	1.2	35
244	Intracranial baroreflex yielding an early Cushing response in human. , 2005, 95, 253-256.		35
245	Symmetry of Cerebral Hemodynamic Indices Derived from Bilateral Transcranial Doppler. Journal of Neuroimaging, 2003, 13, 248-254.	1.0	34
246	Critical Closing Pressure During Intracranial Pressure Plateau Waves. Neurocritical Care, 2013, 18, 341-348.	1.2	34
247	Diffusion tensor imaging profiles reveal specific neural tract distortion in normal pressure hydrocephalus. PLoS ONE, 2017, 12, e0181624.	1.1	34
248	Near Infrared Spectroscopy as Possible Non-invasive Monitor of Slow Vasogenic ICP Waves. Acta Neurochirurgica Supplementum, 2012, 114, 181-185.	0.5	34
249	Experimental Aspects of Cerebrospinal Hemodynamics. Neurosurgery, 1992, 31, 705-710.	0.6	33
250	Assessment of Critical Closing Pressure in the Cerebral Circulation as a Measure of Cerebrovascular Tone. Acta Neurochirurgica, 1999, 141, 1221-1227.	0.9	33
251	Pressure-autoregulation, CO 2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. Acta Neurochirurgica, 2003, 145, 527-532.	0.9	33
252	Effects of acute treatment with statins on cerebral autoregulation in patients after aneurysmal subarachnoid hemorrhage. Neurosurgical Focus, 2006, 21, 1-6.	1.0	33

#	Article	IF	CITATIONS
253	Pulse pressure waveform in hydrocephalus: what it is and what it isn't. Neurosurgical Focus, 2007, 22, 1-7.	1.0	33
254	Cerebrovascular reactivity and autonomic drive following traumatic brain injury. Acta Neurochirurgica Supplementum, 2008, 102, 3-7.	0.5	33
255	Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse. Journal of Neuroscience Methods, 2010, 190, 310-318.	1.3	33
256	Effect of Hyper- and Hypocapnia on Cerebral Arterial Compliance in Normal Subjects. , 2011, 21, 121-125.		33
257	Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurological Research, 2012, 34, 17-24.	0.6	33
258	Genetic drivers of cerebral blood flow dysfunction in TBI: a speculative synthesis. Nature Reviews Neurology, 2019, 15, 25-39.	4.9	33
259	Hydrocephalus shunts and waves of intracranial pressure. Medical and Biological Engineering and Computing, 2005, 43, 71-77.	1.6	32
260	Vasospasm Shortens Cerebral Arterial Time Constant. Neurocritical Care, 2012, 16, 213-218.	1.2	32
261	Brain compliance: the old story with a new â€~et cetera'. Intensive Care Medicine, 2012, 38, 925-927.	3.9	32
262	Doppler Non-invasive Monitoring of ICP in an Animal Model of Acute Intracranial Hypertension. Neurocritical Care, 2015, 23, 419-426.	1.2	32
263	The Evolution of the Role of External Ventricular Drainage in Traumatic Brain Injury. Journal of Clinical Medicine, 2019, 8, 1422.	1.0	32
264	Laboratory testing of the Spiegelberg brain pressure monitor: a technical report Commentary. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 732-735.	0.9	31
265	<i>In vivo</i> assessment of hydrocephalus shunt. Acta Neurologica Scandinavica, 2009, 120, 317-323.	1.0	31
266	Baroreflex and Cerebral Autoregulation Are Inversely Correlated. Circulation Journal, 2014, 78, 2460-2467.	0.7	31
267	Early Asymmetric Cardio-Cerebral Causality and Outcome after Severe Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 2743-2752.	1.7	31
268	Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves. Neurocritical Care, 2017, 26, 330-338.	1.2	31
269	Clinical testing of CSF circulation in hydrocephalus. Acta Neurochirurgica Supplementum, 2005, 95, 247-251.	0.5	31
270	Non-Invasively Estimated ICP Pulse Amplitude Strongly Correlates with Outcome After TBI. Acta Neurochirurgica Supplementum, 2012, 114, 121-125.	0.5	31

#	Article	IF	CITATIONS
271	Frequency-dependent properties of cerebral blood transport—An experimental study in anaesthetized rabbits. Ultrasound in Medicine and Biology, 1994, 20, 391-399.	0.7	30
272	Cerebral Venous Blood Outflow: A Theoretical Model Based on Laboratory Simulation. Neurosurgery, 2001, 49, 1214-1223.	0.6	30
273	Pressures, Flow, and Brain Oxygenation During Plateau Waves of Intracranial Pressure. Neurocritical Care, 2014, 21, 124-132.	1.2	30
274	Central versus Local Radiological Reading of Acute Computed Tomography Characteristics in Multi-Center Traumatic Brain Injury Research. Journal of Neurotrauma, 2019, 36, 1080-1092.	1.7	30
275	Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study. Journal of Neurosurgery, 2020, 132, 1279-1285.	0.9	30
276	Cerebrospinal compensation in hydrocephalic children. Child's Nervous System, 1993, 9, 17-22.	0.6	29
277	Cerebral Vasodilatation Causing Acute Intracranial Hypertension: A Method for Noninvasive Assessment. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 990-996.	2.4	29
278	Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochirurgica, 2005, 147, 1027-1036.	0.9	29
279	Time Constant of the Cerebral Arterial Bed in Normal Subjects. Ultrasound in Medicine and Biology, 2012, 38, 1129-1137.	0.7	29
280	Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurological Research, 2015, 37, 332-340.	0.6	29
281	Enhanced Visualization of Optimal Cerebral Perfusion Pressure Over Time to Support Clinical Decision Making*. Critical Care Medicine, 2016, 44, e996-e999.	0.4	29
282	Intracranial and Extracranial Injury Burden as Drivers of Impaired Cerebrovascular Reactivity in Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1569-1577.	1.7	29
283	Brain Tissue Oxygen and Cerebrovascular Reactivity in Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Exploratory Analysis of Insult Burden. Journal of Neurotrauma, 2020, 37, 1854-1863.	1.7	29
284	Hydrodynamic Properties of Hydrocephalus Shunts. , 1998, 71, 334-339.		29
285	The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochirurgica, 1989, 101, 112-116.	0.9	28
286	In vitro hydrodynamic properties of the Miethke ProGAV hydrocephalus shunt. Cerebrospinal Fluid Research, 2006, 3, 9.	0.5	28
287	Dynamic cerebral autoregulation: should intracranial pressure be taken into account?. Acta Neurochirurgica, 2007, 149, 549-555.	0.9	28
288	Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study. BMC Medicine, 2014, 12, 186.	2.3	28

#	Article	IF	CITATIONS
289	Optimal Mean Arterial Blood Pressure in Extremely Preterm Infants within the First 24 Hours of Life. Journal of Pediatrics, 2018, 203, 242-248.	0.9	28
290	Reference values for intracranial pressure and lumbar cerebrospinal fluid pressure: a systematic review. Fluids and Barriers of the CNS, 2021, 18, 19.	2.4	28
291	Effects of moderate hyperventilation on cerebrovascular pressure-reactivity after head injury. , 2005, 95, 17-20.		28
292	A Model of the Cerebral and Cerebrospinal Fluid Circulations to Examine Asymmetry in Cerebrovascular Reactivity. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 182-192.	2.4	27
293	Pressure Autoregulation and Positron Emission Tomography-derived Cerebral Blood Flow Acetazolamide Reactivity in Patients with Carotid Artery Stenosis. Neurosurgery, 2004, 55, 63-68.	0.6	27
294	Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology. Acta Neurochirurgica, 2018, 160, 2149-2157.	0.9	27
295	Non-Invasive Pressure Reactivity Index Using Doppler Systolic Flow Parameters: A Pilot Analysis. Journal of Neurotrauma, 2019, 36, 713-720.	1.7	27
296	Origin of intracranial pressure pulse waveform. Acta Neurochirurgica, 2020, 162, 1815-1817.	0.9	27
297	Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation. Frontiers in Physiology, 2020, 11, 778.	1.3	27
298	Compliance of the cerebrospinal space: comparison of three methods. Acta Neurochirurgica, 2021, 163, 1979-1989.	0.9	27
299	Continuous Assessment of Cerebral Autoregulation — Clinical Verification of the Method in Head Injured Patients. , 2000, 76, 483-484.		27
300	A synopsis of brain pressures: which? when? are they all useful?. Neurological Research, 2007, 29, 672-679.	0.6	26
301	A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry. Neurological Research, 2010, 32, 425-428.	0.6	26
302	An Association Between ICP-Derived Data and Outcome in TBI Patients: The Role of Sample Size. Neurocritical Care, 2017, 27, 103-107.	1.2	26
303	Pressure Reactivity-Based Optimal Cerebral Perfusion Pressure in a Traumatic Brain Injury Cohort. Acta Neurochirurgica Supplementum, 2018, 126, 209-212.	0.5	26
304	Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index. Journal of Neurotrauma, 2018, 35, 1559-1568.	1.7	26
305	Noninvasive Intracranial Pressure Estimation With Transcranial Doppler: A Prospective Observational Study. Journal of Neurosurgical Anesthesiology, 2020, 32, 349-353.	0.6	26
306	Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocritical Care, 2021, 34, 935-945.	1.2	26

#	Article	IF	CITATIONS
307	Time Constant of the Cerebral Arterial Bed. Acta Neurochirurgica Supplementum, 2012, 114, 17-21.	0.5	26
308	ICM+: A Versatile Software for Assessment of CSF Dynamics. Acta Neurochirurgica Supplementum, 2012, 114, 75-79.	0.5	25
309	Aneurysmal Subarachnoid Hemorrhage in Pregnancy—Case Series, Review, and Pooled Data Analysis. World Neurosurgery, 2016, 88, 383-398.	0.7	25
310	Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatric Research, 2018, 83, 41-49.	1.1	25
311	Decompressive craniectomy for traumatic brain injury: The jury is still out. British Journal of Neurosurgery, 2011, 25, 441-442.	0.4	24
312	Modeling of CSF Dynamics: Legacy of Professor Anthony Marmarou. Acta Neurochirurgica Supplementum, 2012, 113, 9-14.	0.5	24
313	Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study. Acta Neurochirurgica Supplementum, 2016, 122, 323-328.	0.5	24
314	Cerebral haemodynamics during experimental intracranial hypertension. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 694-705.	2.4	24
315	Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury. Acta Neurochirurgica, 2018, 160, 2277-2287.	0.9	24
316	Increased Blood Glucose is Related to Disturbed Cerebrovascular Pressure Reactivity After Traumatic Brain Injury. Neurocritical Care, 2015, 22, 20-25.	1.2	23
317	Long-term monitoring of intracranial pressure in normal pressure hydrocephalus and other CSF disorders. Acta Neurochirurgica, 2017, 159, 1979-1980.	0.9	23
318	Impacts of Simulated Weightlessness by Dry Immersion on Optic Nerve Sheath Diameter and Cerebral Autoregulation. Frontiers in Physiology, 2017, 8, 780.	1.3	23
319	ICP Versus Laser Doppler Cerebrovascular Reactivity Indices to Assess Brain Autoregulatory Capacity. Neurocritical Care, 2018, 28, 194-202.	1.2	23
320	Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. Journal of Neurotrauma, 2020, 37, 1306-1314.	1.7	23
321	Cerebrospinal fluid dynamics in non-acute post-traumatic ventriculomegaly. Fluids and Barriers of the CNS, 2020, 17, 24.	2.4	23
322	Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. , 2006, 96, 108-113.		23
323	Concept of "true ICP―in monitoring and prognostication in head trauma. , 2005, 95, 341-344.		23
324	Gender-related differences in intracranial hypertension and outcome after traumatic brain injury. Acta Neurochirurgica Supplementum, 2008, 102, 25-28.	0.5	23

#	Article	IF	CITATIONS
325	Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: A microdialysis study in 619 patients. PLoS ONE, 2021, 16, e0260291.	1.1	23
326	Cerebrospinal Fluid Production. Journal of Neurosurgery, 2003, 99, 206-7; author reply 207.	0.9	22
327	Critical Closing Pressure: Comparison of Three Methods. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 987-993.	2.4	22
328	Repeatability of cerebrospinal fluid constant rate infusion study. Acta Neurologica Scandinavica, 2014, 130, 131-138.	1.0	22
329	Relationship of Vascular Wall Tension and Autoregulation Following Traumatic Brain Injury. Neurocritical Care, 2014, 21, 266-274.	1.2	22
330	Principles of cerebral hemodynamics when intracranial pressure is raised. Journal of Hypertension, 2015, 33, 1233-1241.	0.3	22
331	Cerebral autoregulation, cerebrospinal fluid outflow resistance, and outcome following cerebrospinal fluid diversion in normal pressure hydrocephalus. Journal of Neurosurgery, 2018, 130, 154-162.	0.9	22
332	Multimodal monitoring and assessment of cerebral haemodynamic reserve after severe head injury. Cerebrovascular and Brain Metabolism Reviews, 1996, 8, 273-95.	2.0	22
333	A laboratory model of testing shunt performance after implantation. British Journal of Neurosurgery, 2002, 16, 30-35.	0.4	21
334	Is There a Direct Link Between Cerebrovascular Activity and Cerebrospinal Fluid Pressure-Volume Compensation?. Stroke, 2007, 38, 2677-2680.	1.0	21
335	Nonlinear Pressure-Flow Relationship Is Able to Detect Asymmetry of Brain Blood Circulation Associated with Midline Shift. Journal of Neurotrauma, 2009, 26, 227-233.	1.7	21
336	Observation of Autoregulation Indices During Ventricular CSF Drainage After Aneurysmal Subarachnoid Hemorrhage: A Pilot Study. Neurocritical Care, 2015, 23, 347-354.	1.2	21
337	Cerebral autoregulation monitoring in acute traumatic brain injury: what's the evidence?. Minerva Anestesiologica, 2017, 83, 844-857.	0.6	21
338	Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients: an Exploratory Analysis. Neurocritical Care, 2020, 32, 373-382.	1.2	21
339	Non-Invasive Cerebral Perfusion Pressure (nCPP): Evaluation of the Monitoring Methodology in Head Injured Patients. , 2000, 76, 451-452.		21
340	Testing of Cerebral Autoregulation in Head Injury by Waveform Analysis of Blood Flow Velocity and Cerebral Perfusion Pressure. , 1994, 60, 468-471.		21
341	Comparison between classic-differential and automatic shunt functioning on the basis of infusion tests. Acta Neurochirurgica, 1990, 106, 1-8.	0.9	20
342	Transient Changes in Brain Tissue Oxygen in Response to Modifications of Cerebral Perfusion Pressure: An Observational Study. Anesthesia and Analgesia, 2010, 110, 165-173.	1.1	20

Marek Czosnyka

#	Article	IF	CITATIONS
343	Evaluation of the cerebrovascular pressure reactivity index using non-invasive finapres arterial blood pressure. Physiological Measurement, 2010, 31, 1217-1228.	1.2	20
344	A Continuous Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity Reflects Cerebral Autoregulation Impairment During Intracranial Pressure Plateau Waves. Neurocritical Care, 2014, 21, 514-525.	1.2	20
345	Effects of Resistance Exercise and Nutritional Supplementation on Dynamic Cerebral Autoregulation in Head-Down Bed Rest. Frontiers in Physiology, 2019, 10, 1114.	1.3	20
346	Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study. Acta Neurochirurgica, 2019, 161, 1275-1284.	0.9	20
347	Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Critical Care, 2020, 24, 266.	2.5	20
348	Clinical Significance of Cerebral Autoregulation. , 2002, 81, 117-119.		20
349	Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery*. Critical Care Medicine, 2021, 49, 650-660.	0.4	20
350	Reduced complexity of intracranial pressure observed in short time series of intracranial hypertension following traumatic brain injury in adults. Journal of Clinical Monitoring and Computing, 2013, 27, 395-403.	0.7	19
351	Brain Monitoring: Do We Need a Hole? An Update on Invasive and Noninvasive Brain Monitoring Modalities. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	19
352	Dynamic cerebral autoregulation estimates derived from near infrared spectroscopy and transcranial Doppler are similar after correction for transit time and blood flow and blood volume oscillations. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 135-149.	2.4	19
353	Assessment of cerebral autoregulation indices – a modelling perspective. Scientific Reports, 2020, 10, 9600.	1.6	19
354	Monitoring of the Association Between Cerebral Blood Flow Velocity and Intracranial Pressure. Acta Neurochirurgica Supplementum, 2012, 114, 147-151.	0.5	19
355	Title is missing!. Journal of Clinical Monitoring and Computing, 1997, 14, 185-198.	0.3	19
356	Impact of duration of symptoms on CSF dynamics in idiopathic normal pressure hydrocephalus. Acta Neurologica Scandinavica, 2011, 123, 414-418.	1.0	18
357	Elevated Diastolic Closing Margin Is Associated with Intraventricular Hemorrhage in Premature Infants. Journal of Pediatrics, 2016, 174, 52-56.	0.9	18
358	Does hypothermia impair cerebrovascular autoregulation in neonates during cardiopulmonary bypass?. Paediatric Anaesthesia, 2017, 27, 905-910.	0.6	18
359	Wavelet pressure reactivity index: a validation study. Journal of Physiology, 2018, 596, 2797-2809.	1.3	18
360	Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatric Research, 2019, 86, 247-253.	1.1	18

#	Article	IF	CITATIONS
361	Ventriculo-peritoneal shunting is a safe and effective treatment for idiopathic intracranial hypertension. British Journal of Neurosurgery, 2019, 33, 62-70.	0.4	18
362	Observations on the Cerebral Effects of Refractory Intracranial Hypertension After Severe Traumatic Brain Injury. Neurocritical Care, 2020, 32, 437-447.	1.2	18
363	Ultrasound non-invasive intracranial pressure assessment in paediatric neurocritical care: a pilot study. Child's Nervous System, 2020, 36, 117-124.	0.6	18
364	Hydrodynamic performance of a new siphon preventing device: the SiphonGuard. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 66, 408a-410a.	0.9	18
365	Asymmetry of critical closing pressure following head injury. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1570-1573.	0.9	17
366	Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption?. Journal of Neurosurgery, 2016, 124, 334-341.	0.9	17
367	Is There a Link Between ICP-Derived Infusion Test Parameters and Outcome After Shunting in Normal Pressure Hydrocephalus?. Acta Neurochirurgica Supplementum, 2018, 126, 229-232.	0.5	17
368	Optimal Cerebral Perfusion Pressure in Centers With Different Treatment Protocols. Critical Care Medicine, 2018, 46, e235-e241.	0.4	17
369	Coupling of CSF and sagittal sinus pressure in adult patients with pseudotumour cerebri. Acta Neurochirurgica, 2020, 162, 1001-1009.	0.9	17
370	Treatment targets based on autoregulation parameters in neurocritical care patients. Current Opinion in Critical Care, 2020, 26, 109-114.	1.6	17
371	Diffuse Intracranial Injury Patterns Are Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. Journal of Neurotrauma, 2020, 37, 1597-1608.	1.7	17
372	Predictive and Discriminative Power of Pressure Reactivity Indices in Traumatic Brain Injury. Neurosurgery, 2020, 87, 655-663.	0.6	17
373	Imaging of cerebral blood flow and metabolism in brain injury in the ICU. Acta Neurochirurgica Supplementum, 2005, 95, 459-464.	0.5	16
374	Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochirurgica, 2018, 160, 1315-1324.	0.9	16
375	Association Between Physiologic Signal Complexity and Outcomes in Moderate and Severe Traumatic Brain Injury: A CENTER-TBI Exploratory Analysis of Multiscale Entropy. Journal of Neurotrauma, 2021, 38, 272-282.	1.7	16
376	Relationship between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute Traumatic Brain Injury Patients: A CENTER-TBI Study. Journal of Neurotrauma, 2020, 37, 1556-1565.	1.7	16
377	Hysteresis of the cerebrospinal pressure-volume curve in hydrocephalus. , 2003, 86, 529-532.		16
378	A computing system for the clinical and experimental investigation of cerebrovascular reactivity. Journal of Clinical Monitoring and Computing, 1997, 14, 185-198.	0.3	15

#	Article	IF	CITATIONS
379	Hydrocephalus, ventriculomegaly and the vegetative state: A review. Neuropsychological Rehabilitation, 2005, 15, 224-236.	1.0	15
380	Cerebrospinal fluid dynamics. European Journal of Anaesthesiology, 2008, 25, 137-141.	0.7	15
381	Cerebral arterial compliance in patients with internal carotid artery disease. European Journal of Neurology, 2011, 18, 711-718.	1.7	15
382	Changes in Cerebral Compartmental Compliances during Mild Hypocapnia in Patients with Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 889-896.	1.7	15
383	Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension. Journal of Neurosurgery, 2015, 122, 1330-1340.	0.9	15
384	Validation of a New Minimally Invasive Intracranial Pressure Monitoring Method by Direct Comparison with an Invasive Technique. Acta Neurochirurgica Supplementum, 2016, 122, 97-100.	0.5	15
385	Assessment of non-invasive ICP during CSF infusion test: an approach with transcranial Doppler. Acta Neurochirurgica, 2016, 158, 279-287.	0.9	15
386	Relationship Between Brain Pulsatility and Cerebral Perfusion Pressure: Replicated Validation Using Different Drivers of CPP Change. Neurocritical Care, 2017, 27, 392-400.	1.2	15
387	Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid haemorrhage. Journal of the Neurological Sciences, 2018, 394, 112-119.	0.3	15
388	Transcranial Doppler as a non-invasive method to estimate cerebral perfusion pressure in children with severe traumatic brain injury. Child's Nervous System, 2020, 36, 125-131.	0.6	15
389	Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure After Traumatic Brain Injury: A CENTER-TBI Study. Neurocritical Care, 2021, 35, 651-661.	1.2	15
390	The relationship between CSF circulation and cerebrovascular pressure-reactivity in normal pressure hydrocephalus. Acta Neurochirurgica Supplementum, 2005, 95, 207-211.	0.5	15
391	Pulse amplitude of intracranial pressure waveform in hydrocephalus. Acta Neurochirurgica Supplementum, 2008, 102, 137-140.	0.5	15
392	Increase in Transcranial Doppler Pulsatility Index Does Not Indicate the Lower Limit of Cerebral Autoregulation. , 1998, 71, 229-232.		15
393	Slight elevation of baseline intracranial pressure after fluid infusion into CSF space in patients with hydrocephalus. Neurological Research, 2004, 26, 628-631.	0.6	14
394	Patient-Specific Thresholds and Doses of Intracranial Hypertension in Severe Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2016, 122, 117-120.	0.5	14
395	Cerebrovascular assessment of patients undergoing shoulder surgery in beach chair position using a multiparameter transcranial Doppler approach. Journal of Clinical Monitoring and Computing, 2019, 33, 615-625.	0.7	14
396	Evaluation of the relationship between slow-waves of intracranial pressure, mean arterial pressure and brain tissue oxygen in TBI: a CENTER-TBI exploratory analysis. Journal of Clinical Monitoring and Computing, 2021, 35, 711-722.	0.7	14

#	Article	IF	CITATIONS
397	Visualising the pressure-time burden of elevated intracranial pressure after severe traumatic brain injury: a retrospective confirmatory study. British Journal of Anaesthesia, 2021, 126, e15-e17.	1.5	14
398	Fuzzy pattern classification of hemodynamic data can be used to determine noninvasive intracranial pressure. , 2005, 95, 345-349.		14
399	Association Between ICP Pulse Waveform Morphology and ICP B Waves. Acta Neurochirurgica Supplementum, 2012, 114, 29-34.	0.5	14
400	Association between arterial and intracranial pressures. British Journal of Neurosurgery, 2000, 14, 127-128.	0.4	13
401	Cerebral critical closing pressure in hydrocephalus patients undertaking infusion tests. Neurological Research, 2015, 37, 674-682.	0.6	13
402	Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves. Neurocritical Care, 2015, 23, 85-91.	1.2	13
403	Cerebral Vasospasm Affects Arterial Critical Closing Pressure. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 285-291.	2.4	13
404	Influence of general anaesthesia on slow waves of intracranial pressure. Neurological Research, 2016, 38, 587-592.	0.6	13
405	Intraoperative non invasive intracranial pressure monitoring during pneumoperitoneum: a case report and a review of the published cases and case report series. Journal of Clinical Monitoring and Computing, 2016, 30, 527-538.	0.7	13
406	A multiplex network approach for the analysis of intracranial pressure and heart rate data in traumatic brain injured patients. Applied Network Science, 2017, 2, 29.	0.8	13
407	Transcranial Doppler in pediatric emergency and intensive care unit: a case series and literature review. Child's Nervous System, 2018, 34, 1465-1470.	0.6	13
408	Burden of hypoxia and intraventricular haemorrhage in extremely preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 242-247.	1.4	13
409	Descriptive analysis of low versus elevated intracranial pressure on cerebral physiology in adult traumatic brain injury: a CENTER-TBI exploratory study. Acta Neurochirurgica, 2020, 162, 2695-2706.	0.9	13
410	Systemic Markers of Injury and Injury Response Are Not Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. Journal of Neurotrauma, 2021, 38, 870-878.	1.7	13
411	The Ontogeny of Cerebrovascular Pressure Autoregulation in Premature Infants. Acta Neurochirurgica Supplementum, 2016, 122, 151-155.	0.5	13
412	How Does Moderate Hypocapnia Affect Cerebral Autoregulation in Response to Changes in Perfusion Pressure in TBI Patients?. Acta Neurochirurgica Supplementum, 2012, 114, 153-156.	0.5	13
413	Baroreflex Impairment After Subarachnoid Hemorrhage Is Associated With Unfavorable Outcome. Stroke, 2018, 49, 1632-1638.	1.0	12
414	Signal Information Prediction of Mortality Identifies Unique Patient Subsets after Severe Traumatic Brain Injury: A Decision-Tree Analysis Approach. Journal of Neurotrauma, 2020, 37, 1011-1019.	1.7	12

#	Article	IF	CITATIONS
415	Predictors of Access to Rehabilitation in the Year Following Traumatic Brain Injury: A European Prospective and Multicenter Study. Neurorehabilitation and Neural Repair, 2020, 34, 814-830.	1.4	12
416	An Update on the COGiTATE Phase II Study: Feasibility and Safety of Targeting an Optimal Cerebral Perfusion Pressure as a Patient-Tailored Therapy in Severe Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 143-147.	0.5	12
417	Early Effects of Passive Leg-Raising Test, Fluid Challenge, and Norepinephrine on Cerebral Autoregulation and Oxygenation in COVID-19 Critically III Patients. Frontiers in Neurology, 2021, 12, 674466.	1.1	12
418	Plateau waves: changes of cerebrovascular pressure transmission. , 2005, 95, 327-332.		12
419	Correlation Between Cerebral Autoregulation and Carbon Dioxide Reactivity in Patients with Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2016, 122, 205-209.	O.5	12
420	Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. Journal of Neurosurgery, 2020, 132, 1952-1960.	0.9	12
421	Laboratory study on "intracranial hypotension" created by pumping the chamber of a hydrocephalus shunt. Cerebrospinal Fluid Research, 2007, 4, 2.	0.5	11
422	Autonomic neuropathy is associated with impairment of dynamic cerebral autoregulation in type 1 diabetes. Autonomic Neuroscience: Basic and Clinical, 2011, 160, 59-63.	1.4	11
423	Static Autoregulation Is Intact Early After Severe Unilateral Brain Injury in a Neonatal Swine Model. Neurosurgery, 2012, 71, 138-145.	0.6	11
424	Optic nerve sheath diameter: the next steps. Intensive Care Medicine, 2019, 45, 1842-1843.	3.9	11
425	Effects of Age and Sex on Optic Nerve Sheath Diameter in Healthy Volunteers and Patients With Traumatic Brain Injury. Frontiers in Neurology, 2020, 11, 764.	1.1	11
426	Intracranial pressure monitoring: modeling cerebrovascular pressure transmission. , 2006, 96, 103-107.		11
427	Evaluation of three new models of hydrocephalus shunts. , 2005, 95, 223-227.		11
428	Cerebral Autoregulation in Non-Brain Injured Patients: A Systematic Review. Frontiers in Neurology, 2021, 12, 732176.	1.1	11
429	Estimation of laser-Doppler flux biological zero using basilar artery flow velocity in the rabbit. American Journal of Physiology - Heart and Circulatory Physiology, 1995, 268, H213-H217.	1.5	10
430	Laboratory Evaluation of the Phoenix CRx Diamond Valve. Neurosurgery, 2001, 48, 689-694.	0.6	10
431	Clinical testing of CSF circulation. European Journal of Anaesthesiology, 2008, 25, 142-145.	0.7	10
432	Short-Term Moderate Hypocapnia Augments Detection of Optimal Cerebral Perfusion Pressure. Journal of Neurotrauma, 2011, 28, 1133-1137.	1.7	10

#	Article	IF	CITATIONS
433	Hydrodynamic properties of the Certas hydrocephalus shunt. Journal of Neurosurgery: Pediatrics, 2013, 11, 198-204.	0.8	10
434	Thresholds for identifying pathological intracranial pressure in paediatric traumatic brain injury. Scientific Reports, 2019, 9, 3537.	1.6	10
435	Transcranial Doppler Non-invasive Assessment of Intracranial Pressure, Autoregulation of Cerebral Blood Flow and Critical Closing Pressure during Orthotopic Liver Transplant. Ultrasound in Medicine and Biology, 2019, 45, 1435-1445.	0.7	10
436	Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals. Medical Engineering and Physics, 2019, 74, 23-32.	0.8	10
437	Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models. Journal of Clinical Monitoring and Computing, 2019, 33, 85-94.	0.7	10
438	Causal relationship between slow waves of arterial, intracranial pressures and blood velocity in brain. Computers in Biology and Medicine, 2021, 139, 104970.	3.9	10
439	Identification of the cerebrospinal compensatory mechanisms via computer-controlled drainage of the cerebrospinal fluid. Child's Nervous System, 1995, 11, 297-300.	0.6	9
440	Changes in transcranial Doppler flow velocity waveform following inhibition of nitric oxide synthesis. Acta Neurochirurgica, 1997, 139, 63-70.	0.9	9
441	Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt. Cerebrospinal Fluid Research, 2008, 5, 8.	0.5	9
442	Phase shift between respiratory oscillations in cerebral blood flow velocity and arterial blood pressure. Physiological Measurement, 2017, 38, 310-324.	1.2	9
443	Radiological Correlates of Raised Intracranial Pressure in Children: A Review. Frontiers in Pediatrics, 2018, 6, 32.	0.9	9
444	Feasibility of Hidden Markov Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury. Critical Care Medicine, 2019, 47, e880-e885.	0.4	9
445	Changes in cardiac autonomic activity during intracranial pressure plateau waves in patients with traumatic brain injury. Clinical Autonomic Research, 2019, 29, 123-126.	1.4	9
446	Value of computerized shunt infusion study in assessment of pediatric hydrocephalus shunt function—a two center cross-sectional study. Child's Nervous System, 2020, 36, 59-71.	0.6	9
447	Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest. Scientific Reports, 2020, 10, 5926.	1.6	9
448	Lower Limit of Reactivity Assessed with PRx in an Experimental Setting. Acta Neurochirurgica Supplementum, 2021, 131, 275-278.	0.5	9
449	A phase-contrast MRI study of physiologic cerebral venous flow. Journal of Cerebral Blood Flow and Metabolism, 0, , .	2.4	9
450	The Role of Monitoring Cerebral Autoregulation After Subarachnoid Hemorrhage. Neurosurgery, 2015, 62, 180-184.	0.6	8

#	Article	IF	CITATIONS
451	Finite element analysis for normal pressure hydrocephalus: The effects of the integration of sulci. Medical Image Analysis, 2015, 24, 235-244.	7.0	8
452	Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring. Acta Neurochirurgica Supplementum, 2016, 122, 143-146.	0.5	8
453	Cerebrospinal fluid dynamics in pediatric pseudotumor cerebri syndrome. Child's Nervous System, 2020, 36, 73-86.	0.6	8
454	The relationship between the time of cerebral desaturation episodes and outcome in aneurysmal subarachnoid haemorrhage: a preliminary study. Journal of Clinical Monitoring and Computing, 2020, 34, 705-714.	0.7	8
455	Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation. PLoS ONE, 2016, 11, e0158506.	1.1	8
456	Analysis of relative changes in pulse shapes of intracranial pressure and cerebral blood flow velocity. Physiological Measurement, 2021, 42, 125004.	1.2	8
457	Calculation of the resistance to CSF outflow. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 1354-1354.	0.9	7
458	Cerebrospinal Fluid Dynamics. , 2005, , 47-63.		7
459	Programmable Shunt Assistant Tested in Cambridge Shunt Evaluation Laboratory. Acta Neurochirurgica Supplementum, 2012, 113, 71-76.	0.5	7
460	Asymmetry of cerebral autoregulation does not correspond to asymmetry of cerebrovascular pressure reactivity. Perspectives in Medicine, 2012, 1, 285-289.	0.4	7
461	Parameter estimations for the cerebrospinal fluid infusion test. Mathematical Medicine and Biology, 2013, 30, 157-174.	0.8	7
462	Phase-shift between arterial flow and ICP pulse during infusion test. Acta Neurochirurgica, 2015, 157, 633-638.	0.9	7
463	Visualisation of the â€~Optimal Cerebral Perfusion' Landscape in Severe Traumatic Brain Injury Patients. Acta Neurochirurgica Supplementum, 2018, 126, 55-58.	0.5	7
464	"Bucket―cerebrospinal fluid bulk flow—is it a fact or a fiction?. Acta Neurochirurgica, 2019, 161, 257-258.	0.9	7
465	Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation?. Journal of Clinical Monitoring and Computing, 2020, 34, 461-468.	0.7	7
466	Shunt infusion studies: impact on patient outcome, including health economics. Acta Neurochirurgica, 2020, 162, 1019-1031.	0.9	7
467	Optimal Cerebral Perfusion Pressure Assessed with a Multi-Window Weighted Approach Adapted for Prospective Use: A Validation Study. Acta Neurochirurgica Supplementum, 2021, 131, 181-185.	0.5	7
468	Variability of the Optic Nerve Sheath Diameter on the Basis of Sex and Age in a Cohort of Healthy Volunteers. Acta Neurochirurgica Supplementum, 2021, 131, 121-124.	0.5	7

#	Article	IF	CITATIONS
469	Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring Among Children Supported by ECMO. Neurocritical Care, 2021, 35, 480-490.	1.2	7
470	Change in Pulsatile Cerebral Arterial Pressure and Flow Waves as a Therapeutic Strategy?. Acta Neurochirurgica Supplementum, 2016, 122, 167-170.	0.5	7
471	Comparison of Different Calibration Methods in a Non-invasive ICP Assessment Model. Acta Neurochirurgica Supplementum, 2018, 126, 79-84.	0.5	7
472	Simultaneous Transients of Intracranial Pressure and Heart Rate in Traumatic Brain Injury: Methods of Analysis. Acta Neurochirurgica Supplementum, 2018, 126, 147-151.	0.5	7
473	Robotic Semi-Automated Transcranial Doppler Assessment of Cerebrovascular Autoregulation in Post-Concussion Syndrome: Methodological Considerations. Neurotrauma Reports, 2020, 1, 218-231.	0.5	7
474	Modeling Brain–Heart Crosstalk Information in Patients with Traumatic Brain Injury. Neurocritical Care, 2022, 36, 738-750.	1.2	7
475	Cerebrospinal compensation of pulsating cerebral blood volume in hydrocephalus. Neurological Research, 2010, 32, 587-592.	0.6	6
476	Cerebrovascular time constant in patients suffering from hydrocephalus. Neurological Research, 2014, 36, 255-261.	0.6	6
477	The thermodynamic brain. Critical Care, 2014, 18, 693.	2.5	6
478	Waveform Analysis of Intraspinal Pressure After Traumatic Spinal Cord Injury: An Observational Study (O-64). Acta Neurochirurgica Supplementum, 2016, 122, 335-338.	0.5	6
479	Overdrainage of cerebrospinal fluid and hydrocephalus shunts. Acta Neurochirurgica, 2017, 159, 1387-1388.	0.9	6
480	Influence of mild-moderate hypocapnia on intracranial pressure slow waves activity in TBI. Acta Neurochirurgica, 2020, 162, 345-356.	0.9	6
481	Cardiovascular and cerebrovascular responses to cardioâ€respiratory events in preterm infants during the transitional period. Journal of Physiology, 2020, 598, 4107-4119.	1.3	6
482	Autonomic Nervous System Activity during Refractory Rise in Intracranial Pressure. Journal of Neurotrauma, 2021, 38, 1662-1669.	1.7	6
483	Cerebrovascular Consequences of Elevated Intracranial Pressure After Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 43-48.	0.5	6
484	Association of transcranial Doppler blood flow velocity slow waves with delayed cerebral ischemia in patients suffering from subarachnoid hemorrhage: a retrospective study. Intensive Care Medicine Experimental, 2021, 9, 11.	0.9	6
485	Are Slow Waves of Intracranial Pressure Suppressed by General Anaesthesia?. Acta Neurochirurgica Supplementum, 2018, 126, 129-132.	0.5	6
486	Indices for Decreased Cerebral Blood Flow Control — A Modelling Study. , 1998, 71, 269-271.		6

Indices for Decreased Cerebral Blood Flow Control â€" A Modelling Study. , 1998, 71, 269-271. 486

#	Article	IF	CITATIONS
487	Comparison of different metrics of cerebral autoregulation in association with major morbidity and mortality after cardiac surgery. British Journal of Anaesthesia, 2022, 129, 22-32.	1.5	6
488	Cerebral Autoregulation among Patients with Symptoms of Hydrocephalus. Neurosurgery, 2002, 50, 526-533.	0.6	5
489	Sex-Related Differences and Traumatic Brain Injury. Journal of Neurosurgery, 2003, 99, 616; author reply 616-7.	0.9	5
490	The course of dynamic cerebral autoregulation during cervical internal carotid artery occlusion. Neurological Research, 2011, 33, 921-926.	0.6	5
491	A Method for Estimating Zero-Flow Pressure and Intracranial Pressure. Journal of Neurosurgical Anesthesiology, 2013, 25, 25-32.	0.6	5
492	Traumatic brain injury: Increasing ICP attenuates respiratory modulations of cerebral blood flow velocity. Medical Engineering and Physics, 2015, 37, 175-179.	0.8	5
493	Cerebral Critical Closing Pressure: Is the Multiparameter Model Better Suited to Estimate Physiology of Cerebral Hemodynamics?. Neurocritical Care, 2016, 25, 446-454.	1.2	5
494	Who Needs a Revision? 20 Years of Cambridge Shunt Lab. Acta Neurochirurgica Supplementum, 2016, 122, 347-351.	0.5	5
495	Shunt Testing In Vivo: Observational Study of Problems with Ventricular Catheter. Acta Neurochirurgica Supplementum, 2016, 122, 353-356.	0.5	5
496	Computed Tomography Indicators of Deranged Intracranial Physiology in Paediatric Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2018, 126, 29-34.	0.5	5
497	Effect of Mild Hypocapnia on Critical Closing Pressure and Other Mechanoelastic Parameters of the Cerebrospinal System. Acta Neurochirurgica Supplementum, 2018, 126, 139-142.	0.5	5
498	Brain pulsations enlightened. Acta Neurochirurgica, 2018, 160, 225-227.	0.9	5
499	Validation of non-invasive cerebrovascular pressure reactivity and pulse amplitude reactivity indices in traumatic brain injury. Acta Neurochirurgica, 2020, 162, 337-344.	0.9	5
500	Brain Multimodal Monitoring in Severe Acute Brain Injury: Is It Relevant to Patient Outcome and Mortality?. Acta Neurochirurgica Supplementum, 2021, 131, 83-86.	0.5	5
501	Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods. Child's Nervous System, 2021, 37, 3057-3065.	0.6	5
502	Midline shift in patients with closed traumatic brain injury may be driven by cerebral perfusion pressure not intracranial pressure. Journal of Neurosurgical Sciences, 2021, 65, 383-390.	0.3	5
503	Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications. Biological and Medical Physics Series, 2019, , 181-214.	0.3	5
504	Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects. Acta Neurochirurgica Supplementum, 2016, 122, 211-214.	0.5	5

#	Article	IF	CITATIONS
505	The Relationship of Vasogenic Waves to ICP and Cerebral Perfusion Pressure in Head Injured Patients. , 1998, 71, 297-299.		5
506	The Use of Different Components of Brain Oxygenation for the Assessment of Cerebral Haemodynamics: A Prospective Observational Study on COVID-19 Patients. Frontiers in Neurology, 2021, 12, 735469.	1.1	5
507	Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatric Research, 2022, 92, 135-141.	1.1	5
508	Hydrodynamic Properties of Extraventricular Drainage Systems. Neurosurgery, 2003, 52, 619-623.	0.6	4
509	Doppler Flow Velocity and Intra-cranial Pressure: Responses to Short-Term Mild Hypocapnia Help to Assess the Pressure-Volume Relationship After Head Injury. Ultrasound in Medicine and Biology, 2013, 39, 1521-1526.	0.7	4
510	Increased Intracranial Pressure. Critical Care Medicine, 2013, 41, 688.	0.4	4
511	Cerebral Critical Closing Pressure During Infusion Tests. Acta Neurochirurgica Supplementum, 2016, 122, 215-220.	0.5	4
512	Glycemia Is Related to Impaired Cerebrovascular Autoregulation after Severe Pediatric Traumatic Brain Injury: A Retrospective Observational Study. Frontiers in Pediatrics, 2017, 5, 205.	0.9	4
513	Increased ICP and Its Cerebral Haemodynamic Sequelae. Acta Neurochirurgica Supplementum, 2018, 126, 47-50.	0.5	4
514	Validation of Davson's equation in patients suffering from idiopathic normal pressure hydrocephalus. Acta Neurochirurgica, 2018, 160, 1097-1103.	0.9	4
515	Critical Closing Pressure During Controlled Increase in Intracranial Pressure—Comparison of Three Methods. IEEE Transactions on Biomedical Engineering, 2018, 65, 619-624.	2.5	4
516	Survey in expert clinicians on the validity of automated calculation of optimal cerebral perfusion pressure. Minerva Anestesiologica, 2018, 84, 40-48.	0.6	4
517	Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects. Journal of Clinical Monitoring and Computing, 2019, 33, 605-613.	0.7	4
518	DeepClean: Self-Supervised Artefact Rejection for Intensive Care Waveform Data Using Deep Generative Learning. Acta Neurochirurgica Supplementum, 2021, 131, 235-241.	0.5	4
519	A Microdialysis Study of Oral Vigabatrin Administration in Head Injury Patients: Preliminary Evaluation of Multimodality Monitoring. Acta Neurochirurgica Supplementum, 2012, 114, 271-276.	0.5	4
520	Clinical Evaluation of Adult Hydrocephalus. , 2011, , 494-514.		4
521	Inducing oscillations in positive end-expiratory pressure improves assessment of cerebrovascular pressure reactivity in patients with traumatic brain injury. Journal of Applied Physiology, 2022, 133, 585-592.	1.2	4
522	CSF Pulse Pressure and B Waves. Journal of Neurosurgery, 2005, 103, 767-768.	0.9	3

#	Article	IF	CITATIONS
523	Slow oscillations in middle cerebral artery cerebral blood flow velocity and aging. Neurological Research, 2007, 29, 260-263.	0.6	3
524	Critical Thresholds for Cerebrovascular Reactivity: Facts, No Fiction!. Neurocritical Care, 2012, 17, 152-153.	1.2	3
525	Pre-hospital Predictors of Impaired ICP Trends in Continuous Monitoring of Paediatric Traumatic Brain Injury Patients. Acta Neurochirurgica Supplementum, 2018, 126, 7-10.	0.5	3
526	Cambios metabólicos corticales y resultado clÃnico en la hidrocefalia normotensiva después de la derivación ventrÃculo-peritoneal: nuestros resultados preliminares. Revista Espanola De Medicina Nuclear E Imagen Molecular, 2020, 39, 367-374.	0.0	3
527	Transcranial Doppler-derived indices of cerebrovascular haemodynamics are independent of depth and angle of insonation. Journal of Clinical Neuroscience, 2020, 82, 115-121.	0.8	3
528	Critical closing pressure during experimental intracranial hypertension: comparison of three calculation methods. Neurological Research, 2020, 42, 387-397.	0.6	3
529	Noninvasive Intracranial Pressure Assessment in Patients with Suspected Idiopathic Intracranial Hypertension. Acta Neurochirurgica Supplementum, 2021, 131, 325-327.	0.5	3
530	Delay of cerebral autoregulation in traumatic brain injury patients. Clinical Neurology and Neurosurgery, 2021, 202, 106478.	0.6	3
531	CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus. Journal of Clinical Medicine, 2021, 10, 1711.	1.0	3
532	Change in Blood Flow Velocity Pulse Waveform during Plateau Waves of Intracranial Pressure. Brain Sciences, 2021, 11, 1000.	1.1	3
533	Intracranial pulse pressure waveform analysis using the higher harmonics centroid. Acta Neurochirurgica, 2021, 163, 3249-3258.	0.9	3
534	External Hydrocephalus After Traumatic Brain Injury: Retrospective Study of 102 Patients. Acta Neurochirurgica Supplementum, 2021, 131, 35-38.	0.5	3
535	Occurrence of CPPopt Values in Uncorrelated ICP and ABP Time Series. Acta Neurochirurgica Supplementum, 2018, 126, 143-146.	0.5	3
536	Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri. Acta Neurochirurgica Supplementum, 2018, 126, 233-236.	0.5	3
537	Monitoring and Interpretation of Intracranial Pressure. , 2006, , 285-313.		3
538	Prolonged Automated Robotic TCD Monitoring in Acute Severe TBI: Study Design and Rationale. Neurocritical Care, 2022, , 1.	1.2	3
539	Hydrocephalus and the neuro-intensivist: CSF hydrodynamics at the bedside. Intensive Care Medicine Experimental, 2022, 10, .	0.9	3
540	A Feedback-Controlled Pump Produces Stable Hypotension in Anaesthetised Rabbits. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 532-536.	2.4	2

#	Article	IF	CITATIONS
541	Estimation of critical closing pressure and cerebral perfusion pressure using transcranial Doppler. British Journal of Anaesthesia, 2003, 90, 396-397.	1.5	2
542	In Reply. Neurosurgery, 2013, 72, E320.	0.6	2
543	Spectral analysis of intracranial pressure: Is it helpful in the assessment of shunt functioning in-vivo?. Clinical Neurology and Neurosurgery, 2016, 142, 112-119.	0.6	2
544	Comparison of ventricular drain location and infusion test in hydrocephalus. Acta Neurologica Scandinavica, 2017, 135, 291-301.	1.0	2
545	Cerebrospinal Fluid Pressure Dynamics. , 2019, , 293-326.		2
546	In a Search of Pressure Which Optimizes Autoregulation of Cerebral Blood Flow*. Critical Care Medicine, 2019, 47, 1472-1473.	0.4	2
547	Patient's Clinical Presentation and CPPopt Availability: Any Association?. Acta Neurochirurgica Supplementum, 2021, 131, 167-172.	0.5	2
548	The Role of Cerebrospinal Fluid Dynamics in Normal Pressure Hydrocephalus Diagnosis and Shunt Prognostication. Acta Neurochirurgica Supplementum, 2021, 131, 359-363.	0.5	2
549	Arterial and Venous Cerebral Blood Flow Velocities in Healthy Volunteers. Acta Neurochirurgica Supplementum, 2021, 131, 131-134.	0.5	2
550	Visualization of Intracranial Pressure Insults After Severe Traumatic Brain Injury: Influence of Individualized Limits of Reactivity. Acta Neurochirurgica Supplementum, 2021, 131, 7-10.	0.5	2
551	Is Lumbar Puncture Needed? – Noninvasive Assessment of ICP Facilitates Decision Making in Patients with Suspected Idiopathic Intracranial Hypertension. Ultraschall in Der Medizin, 2023, 44, e91-e98.	0.8	2
552	Differences in Cerebrospinal Fluid Dynamics in Posttraumatic Hydrocephalus Versus Atrophy, Including Effect of Decompression and Cranioplasty. Acta Neurochirurgica Supplementum, 2021, 131, 343-347.	0.5	2
553	Analysis of Cardio-Cerebral Crosstalk Events in an Adult Cohort from the CENTER-TBI Study. Acta Neurochirurgica Supplementum, 2021, 131, 39-42.	0.5	2
554	Optimal Cerebral Perfusion Pressure Based on Intracranial Pressure-Derived Indices of Cerebrovascular Reactivity: Which One Is Better for Outcome Prediction in Moderate/Severe Traumatic Brain Injury?. Acta Neurochirurgica Supplementum, 2021, 131, 173-179.	0.5	2
555	Application of Advanced Forms of Intracranial Pressure Analysis in Craniosynostosis. , 1989, , 189-192.		2
556	Role of Pressure Reactivity Index in Neurocritical Care. , 2015, , 223-236.		2
557	Factors Determining Mean ICP in Hydrocephalic Patients with Hakim-programmable Valve: Implications of the Parallel Arrangement of the CSF Outflow Resistance and Shunt. , 2002, 81, 23-26.		2
558	Assessment of cerebrovascular resistance with model of cerebrovascular pressure transmission. Acta Neurochirurgica Supplementum, 2008, 102, 37-41.	0.5	2

Marek Czosnyka

#	Article	IF	CITATIONS
559	Relationship Between Baroreflex and Cerebral Autoregulation in Patients With Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neurology, 2021, 12, 740338.	1.1	2
560	Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Child's Nervous System, 2022, 38, 1717-1726.	0.6	2
561	Decompressive craniectomy following traumatic brain injury leads to reduction in intracranial pressure and improves cerebral autoregulation. European Journal of Anaesthesiology, 2005, 22, 8.	0.7	1
562	Monitoring of intracranial pressure and assessment of cerebrospinal fluid dynamics. , 0, , 150-163.		1
563	David Price – Pioneer of digital ICP monitoring, neurosurgeon and teacher. British Journal of Neurosurgery, 2015, 29, 312-313.	0.4	1
564	Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen. Acta Neurochirurgica Supplementum, 2016, 122, 177-179.	0.5	1
565	Can interhemispheric desynchronization of cerebral blood flow anticipate upcoming vasospasm in aneurysmal subarachnoid haemorrhage patients?. Journal of Neuroscience Methods, 2019, 325, 108358.	1.3	1
566	Brain Venous Blood Outflow. Neurocritical Care, 2019, 31, 249-250.	1.2	1
567	Reply to: Optic nerve sheath diameter measurement in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation, 2019, 138, 308-309.	1.3	1
568	Continuous monitoring of cerebrovascular reactivity through pulse transit time and intracranial pressure. Physiological Measurement, 2019, 40, 01LT01.	1.2	1
569	Cerebrospinal Fluid Pressure Dynamics. , 2019, , 1-34.		1
570	A comparison of the time constant of the cerebral arterial bed using invasive and non-invasive arterial blood pressure measurements. Physiological Measurement, 2020, 41, 075001.	1.2	1
571	Lower Breakpoint of Intracranial Amplitude-Pressure Relationship in Normal Pressure Hydrocephalus. Acta Neurochirurgica Supplementum, 2021, 131, 307-309.	0.5	1
572	Single Center Experience in Cerebrospinal Fluid Dynamics Testing. Acta Neurochirurgica Supplementum, 2021, 131, 311-313.	0.5	1
573	Comparison of Two Intracranial Pressure Calculation Methods and Their Effects on the Mean Intracranial Pressure and Intracranial Pressure Dose. Acta Neurochirurgica Supplementum, 2021, 131, 31-33.	0.5	1
574	Analysis of Intracranial Pressure Pulse–Pressure Relationship: Experimental Validation. Acta Neurochirurgica Supplementum, 2021, 131, 279-282.	0.5	1
575	Spectral Cerebral Blood Volume Accounting for Noninvasive Estimation of Changes in Cerebral Perfusion Pressure in Patients with Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 193-199.	0.5	1
576	Methodological Consideration on Monitoring Refractory Intracranial Hypertension and Autonomic Nervous System Activity. Acta Neurochirurgica Supplementum, 2021, 131, 211-215.	0.5	1

#	Article	IF	CITATIONS
577	Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications. Biological and Medical Physics Series, 2011, , 137-167.	0.3	1
578	Increasing Intracranial Pressure After Head Injury: Impact on Respiratory Oscillations in Cerebral Blood Flow Velocity. Acta Neurochirurgica Supplementum, 2016, 122, 171-175.	0.5	1
579	Do ICP-Derived Parameters Differ in Vegetative State from Other Outcome Groups After Traumatic Brain Injury?. Acta Neurochirurgica Supplementum, 2018, 126, 17-20.	0.5	1
580	TRANSCRANIAL DOPPLER ULTRASONOGRAPHY IN ANESTHESIA AND NEUROSURGERY. , 2010, , 131-146.		1
581	Hydrocephalus. A Practical Guide to CSF Dynamics and Ventriculoperitoneal Shunts. Advances in Clinical Neuroscience & Rehabilitation: ACNR, 2006, 6, 14-17.	0.1	1
582	Cerebrovascular Autoregulation and Monitoring of Cerebrovascular Reactivity. , 2014, , 401-420.		1
583	The Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity During ICP Plateau Waves. Acta Neurochirurgica Supplementum, 2016, 122, 81-83.	0.5	1
584	Mathematical Modelling in Hydrocephalus. Neurology India, 2021, 69, 275.	0.2	1
585	Technical considerations on the use of Granger causality in neuromonitoring. Brain Multiphysics, 2022, 3, 100044.	0.8	1
586	Feasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach. Journal of Clinical Monitoring and Computing, 2022, 36, 1805-1815.	0.7	1
587	Clinical Outcomes After Ventriculo-Peritoneal Shunting in Patients With Classic vs. Complex NPH. Frontiers in Neurology, 0, 13, .	1.1	1
588	Cerebral haemodynamics assessed by transcranial Doppler ultrasonography during orthotopic liver transplant. A preliminary report. European Journal of Anaesthesiology, 2005, 22, 11.	0.7	0
589	Reply to â€~Comments on "Analysis of intracranial pressure during and after the infusion test in patients with communicating hydrocephalusâ€â€™. Physiological Measurement, 2006, 27, L9-L12.	1.2	Ο
590	Intracranial Pressure Monitoring. , 2008, , 259-266.		0
591	Intracranial Hypertension and Brain Monitoring. , 2011, , 822-836.		Ο
592	Real availability of current devices in traumatic brain injury management. Critical Care Medicine, 2012, 40, 3117.	0.4	0
593	The authors reply. Critical Care Medicine, 2013, 41, e5.	0.4	0
594	Near infrared spectroscopy monitoring—Opening a window on the first 24h after cardiac arrest?. Resuscitation, 2014, 85, 452-453.	1.3	0

#	Article	IF	CITATIONS
595	Non-invasive ICP assessment through time of flight. Acta Neurologica Scandinavica, 2016, 134, 383-383.	1.0	0
596	Introducing brain-heart crosstalks information in clinical decision support systems for TBI patients, through ICM+. , 2020, , .		0
597	Errors and Consequences of Inaccurate Estimation of Mean Blood Flow Velocity in Cerebral Arteries. Acta Neurochirurgica Supplementum, 2021, 131, 23-25.	0.5	Ο
598	Cerebrovascular Impedance During Hemodynamic Change in Rabbits: A Pilot Study. Acta Neurochirurgica Supplementum, 2021, 131, 283-288.	0.5	0
599	Global Cerebral Autoregulation, Resistance to Cerebrospinal Fluid Outflow and Cerebrovascular Burden in Normal Pressure Hydrocephalus. Acta Neurochirurgica Supplementum, 2021, 131, 349-353.	0.5	Ο
600	817 Robotic Semi-Automated Transcranial Doppler Assessment of Cerebrovascular Autoregulation in Post Concussional Syndrome: Methodological Considerations. British Journal of Surgery, 2021, 108, .	0.1	0
601	Comparison of Assessment for Shunting with Infusion Studies Versus Extended Lumbar Drainage in Suspected Normal Pressure Hydrocephalus. Acta Neurochirurgica Supplementum, 2021, 131, 355-358.	0.5	0
602	Usability of Noninvasive Counterparts of Traditional Autoregulation Indices in Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 163-166.	0.5	0
603	Clinical Aspects of Disorders of the Choroid Plexus and the CSF Circulation. , 2005, , 497-517.		0
604	Cerebral perfusion pressure or arterial pressure only: How to assess dynamic cerebral autoregulation more accurately?. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S175-S175.	2.4	0
605	Asymmetry of cerebral circulation in injured brain. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S563-S563.	2.4	0
606	Evaluation of the mathematical assumption underlying numerical identification modeling of cerebrovascular pressure transmission. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S188-S188.	2.4	0
607	Cerebral haemodynamics assessed by transcranial Doppler ultrasonography during orthotopic liver transplant. A preliminary report. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S183-S183.	2.4	0
608	The Interaction Between Heart Systole and Cerebral Circulation During Lower Body Negative Pressure Test. Acta Neurochirurgica Supplementum, 2016, 122, 137-141.	0.5	0
609	Cardiorespiratory Events in Infants Born Preterm during the Transitional Period. Journal of Pediatrics, 2020, 221, 32-38.e2.	0.9	ο
610	Neurocritical Care Monitoring in ICU: Measurement of the Cerebral Autoregulation by Transcranial Doppler (TCD). , 2022, , 291-297.		0
611	Title is missing!. , 2020, 15, e0243427.		0
612	Title is missing!. , 2020, 15, e0243427.		0

#	Article	IF	CITATIONS
613	Title is missing!. , 2020, 15, e0243427.		0
614	Title is missing!. , 2020, 15, e0243427.		0

Title is missing!. , 2020, 15, e0243427. 614