Baris Kanber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8351055/publications.pdf

Version: 2024-02-01

		840776	552781
32	749	11	26
papers	citations	h-index	g-index
33	33	33	1362
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Visual Function and Brief Cognitive Assessment for Multiple Sclerosis in Optic Neuritis Clinically Isolated Syndrome Patients. Journal of Neuro-Ophthalmology, 2022, 42, e22-e31.	0.8	4
2	Spatial patterns of brain lesions assessed through covariance estimations of lesional voxels in multiple Sclerosis: The SPACE-MS technique. NeuroImage: Clinical, 2022, 33, 102904.	2.7	5
3	Retinoid-X receptor agonism promotes remyelination in relapsing-remitting multiple sclerosis: a phase 2 clinical trial. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A92.3-A92.	1.9	1
4	Ongoing microstructural changes in the cervical cord underpin disability progression in early primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 28-38.	3.0	11
5	Musclesense: a Trained, Artificial Neural Network for the Anatomical Segmentation of Lower Limb Magnetic Resonance Images in Neuromuscular Diseases. Neuroinformatics, 2021, 19, 379-383.	2.8	2
6	Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data. Epilepsia, 2021, 62, 807-816.	5.1	9
7	Brain microstructural and metabolic alterations detected <i>in vivo</i> at onset of the first demyelinating event. Brain, 2021, 144, 1409-1421.	7.6	24
8	Cortical involvement determines impairment 30 years after a clinically isolated syndrome. Brain, 2021, 144, 1384-1395.	7.6	24
9	Comparison of Neurite Orientation Dispersion and Density Imaging and Two-Compartment Spherical Mean Technique Parameter Maps in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 662855.	2.4	12
10	Utility of diffusion MRI characteristics of cervical lymph nodes as disease classifier between patients with head and neck squamous cell carcinoma and healthy volunteers. NMR in Biomedicine, 2021, 34, e4587.	2.8	0
11	Non-parametric combination of multimodal MRI for lesion detection in focal epilepsy. NeuroImage: Clinical, 2021, 32, 102837.	2.7	3
12	Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurology, The, 2021, 20, 709-720.	10.2	44
13	Clinical relevance of cortical network dynamics in early primary progressive MS. Multiple Sclerosis Journal, 2020, 26, 442-456.	3.0	14
14	A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 774-785.	3.0	13
15	Magnetisation transfer ratio abnormalities in primary and secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 679-687.	3.0	11
16	Single-subject structural cortical networks in clinically isolated syndrome. Multiple Sclerosis Journal, 2020, 26, 1392-1401.	3.0	10
17	Reduced neurite density in the brain and cervical spinal cord in relapsing–remitting multiple sclerosis: A NODDI study. Multiple Sclerosis Journal, 2020, 26, 1647-1657.	3.0	48
18	Neurosense: deep sensing of full or near-full coverage head/brain scans in human magnetic resonance imaging. Neuroinformatics, 2020, 18, 333-336.	2.8	0

#	Article	IF	CITATION
19	Sodium in the Relapsing–Remitting Multiple Sclerosis Spinal Cord: Increased Concentrations and Associations With Microstructural Tissue Anisotropy. Journal of Magnetic Resonance Imaging, 2020, 52, 1429-1438.	3.4	8
20	White matter integrity correlates with cognition and disease severity in Fabry disease. Brain, 2020, 143, 3331-3342.	7.6	12
21	Validation of computational lesion detection methods in magnetic resonance imaging–negative, focal epilepsy. Epilepsia, 2020, 61, 828-830.	5.1	2
22	Disrupted principal network organisation in multiple sclerosis relates to disability. Scientific Reports, 2020, 10, 3620.	3.3	2
23	A preclinical ultrasound method for the assessment of vascular disease progression in murine models. Ultrasound, 2019, 27, 85-93.	0.7	3
24	Learning to see the invisible: A dataâ€driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia, 2019, 60, 2499-2507.	5.1	14
25	High-dimensional detection of imaging response to treatment in multiple sclerosis. Npj Digital Medicine, 2019, 2, 49.	10.9	12
26	Structural network disruption markers explain disability in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 219-226.	1.9	37
27	ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Residual Fluid Intelligence Scores from Cortical Grey Matter Morphology. Lecture Notes in Computer Science, 2019, , 114-123.	1.3	6
28	ABCD Neurocognitive Prediction Challenge 2019: Predicting Individual Fluid Intelligence Scores from Structural MRI Using Probabilistic Segmentation and Kernel Ridge Regression. Lecture Notes in Computer Science, 2019, , 133-142.	1.3	18
29	Longitudinal Analysis Framework of DWI Data for Reconstructing Structural Brain Networks with Application to Multiple Sclerosis. Mathematics and Visualization, 2018, , 205-218.	0.6	O
30	Fully Automated Patch-Based Image Restoration: Application to Pathology Inpainting. Lecture Notes in Computer Science, 2016, , 3-15.	1.3	2
31	A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis. Neurolmage, 2016, 139, 376-384.	4.2	74
32	Predicting Response of Colorectal Hepatic Metastasis: Value of Pretreatment Apparent Diffusion Coefficients. American Journal of Roentgenology, 2007, 188, 1001-1008.	2.2	324