Venkatesh N Murthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350854/publications.pdf

Version: 2024-02-01

78 papers

11,940 citations

39 h-index 79541 73 g-index

102 all docs 102 docs citations

102 times ranked

12472 citing authors

#	Article	IF	Citations
1	Deletion of TrkB in parvalbumin interneurons alters cortical neural dynamics. Journal of Cellular Physiology, 2022, 237, 949-964.	2.0	8
2	Olfactory Sensing and Navigation in Turbulent Environments. Annual Review of Condensed Matter Physics, 2022, 13, 191-213.	5.2	35
3	Cover Image, Volume 237, Number 1, January 2022. Journal of Cellular Physiology, 2022, 237, .	2.0	O
4	A new angle on odor trail tracking. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121332119.	3.3	0
5	Multi-animal pose estimation, identification and tracking with DeepLabCut. Nature Methods, 2022, 19, 496-504.	9.0	165
6	Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice. Nature Communications, 2020, 11, 3350.	5.8	51
7	Rapid Learning of Odor–Value Association in the Olfactory Striatum. Journal of Neuroscience, 2020, 40, 4335-4347.	1.7	40
8	How neuroscience labs can limit their environmental impact. Nature Reviews Neuroscience, 2020, 21, 347-348.	4.9	35
9	Microglial depletion disrupts normal functional development of adult-born neurons in the olfactory bulb. ELife, 2020, 9, .	2.8	35
10	Mosaic representations of odors in the input and output layers of the mouse olfactory bulb. Nature Neuroscience, 2019, 22, 1306-1317.	7.1	30
11	Neuronal integration in the adult mouse olfactory bulb is a non-selective addition process. ELife, 2019, 8, .	2.8	33
12	Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nature Neuroscience, 2018, 21, 517-529.	7.1	20
13	Olfactory marker protein (OMP) regulates formation and refinement of the olfactory glomerular map. Nature Communications, 2018, 9, 5073.	5.8	36
14	Carpenter ants use diverse antennae sampling strategies to track odor trails. Journal of Experimental Biology, 2018, 221, .	0.8	39
15	How to monitor breathing in laboratory rodents: a review of the current methods. Journal of Neurophysiology, 2018, 120, 624-632.	0.9	35
16	Calcium-activated chloride channels clamp odor-evoked spike activity in olfactory receptor neurons. Scientific Reports, 2018, 8, 10600.	1.6	13
17	DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 2018, 21, 1281-1289.	7.1	2,710
18	Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron. ELife, 2018, 7, .	2.8	38

#	Article	IF	Citations
19	Antagonism in olfactory receptor neurons and its implications for the perception of odor mixtures. ELife, $2018, 7, .$	2.8	72
20	Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice. Cell, 2017, 171, 1176-1190.e17.	13.5	197
21	Distinct projection patterns of different classes of layer 2 principal neurons in the olfactory cortex. Scientific Reports, 2017, 7, 8282.	1.6	32
22	Development and Refinement of Functional Properties of Adult-Born Neurons. Neuron, 2017, 96, 883-896.e7.	3.8	35
23	Processing of Odor Mixtures in the Mammalian Olfactory System. Journal of the Indian Institute of Science, 2017, 97, 415-421.	0.9	5
24	Mice Develop Efficient Strategies for Foraging and Navigation Using Complex Natural Stimuli. Current Biology, 2016, 26, 1261-1273.	1.8	98
25	Reading Out Olfactory Receptors: Feedforward Circuits Detect Odors in Mixtures without Demixing. Neuron, 2016, 91, 1110-1123.	3.8	42
26	Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb. Scientific Reports, 2016, 6, 29308.	1.6	18
27	Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nature Neuroscience, 2016, 19, 271-282.	7.1	98
28	Circuit Formation and Function in the Olfactory Bulb of Mice with Reduced Spontaneous Afferent Activity. Journal of Neuroscience, 2015, 35, 146-160.	1.7	36
29	An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nature Neuroscience, 2014, 17, 1225-1232.	7.1	129
30	Analysis and Synthesis in Olfaction. ACS Chemical Neuroscience, 2014, 5, 870-872.	1.7	5
31	All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 2014, 11, 825-833.	9.0	666
32	Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nature Neuroscience, 2013, 16, 949-957.	7.1	186
33	Distinct spatiotemporal activity in principal neurons of the mouse olfactory bulb in anesthetized and awake states. Frontiers in Neural Circuits, 2013, 7, 46.	1.4	38
34	Activity-Dependent Regulation of Inhibition via GAD67. Journal of Neuroscience, 2012, 32, 8521-8531.	1.7	135
35	Illuminating Vertebrate Olfactory Processing. Journal of Neuroscience, 2012, 32, 14102-14108a.	1.7	25
36	Functional Properties of Cortical Feedback Projections to the Olfactory Bulb. Neuron, 2012, 76, 1175-1188.	3.8	210

#	Article	IF	CITATIONS
37	Optophysiological analysis of associational circuits in the olfactory cortex. Frontiers in Neural Circuits, 2012, 6, 18.	1.4	64
38	Looking back on the first year of Neural Systems & Circuits. Neural Systems & Circuits, 2012, 2, 1.	1.8	0
39	Two-Photon Imaging of Neural Activity in Awake, Head-Restrained Mice. Neuromethods, 2011, , 45-60.	0.2	9
40	Role of Astrocytes in Neurovascular Coupling. Neuron, 2011, 71, 782-797.	3.8	347
41	Olfactory Maps in the Brain. Annual Review of Neuroscience, 2011, 34, 233-258.	5.0	143
42	Postnatal Development of Dendrodendritic Inhibition in the Mammalian Olfactory Bulb. Frontiers in Cellular Neuroscience, 2011, 5, 10.	1.8	22
43	Molecular organization of vomeronasal chemoreception. Nature, 2011, 478, 241-245.	13.7	286
44	Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nature Neuroscience, 2010, 13, 1404-1412.	7.1	214
45	Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1882-1887.	3.3	187
46	Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 2009, 12, 210-220.	7.1	290
47	Serotonergic modulation of odor input to the mammalian olfactory bulb. Nature Neuroscience, 2009, 12, 784-791.	7.1	193
48	Coupling of Neural Activity to Blood Flow in Olfactory Glomeruli Is Mediated by Astrocytic Pathways. Neuron, 2008, 58, 897-910.	3.8	220
49	LED Arrays as Cost Effective and Efficient Light Sources for Widefield Microscopy. PLoS ONE, 2008, 3, e2146.	1.1	66
50	Experience-Dependent Modification of Primary Sensory Synapses in the Mammalian Olfactory Bulb. Journal of Neuroscience, 2007, 27, 9427-9438.	1.7	58
51	Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nature Neuroscience, 2006, 9, 642-649.	7.1	189
52	Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin. Nature Protocols, 2006, 1, 2970-2978.	5.5	89
53	Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17955-17960.	3.3	213
54	Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. Journal of Physiology, 2005, 569, 103-117.	1.3	54

#	Article	IF	CITATIONS
55	Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb. Journal of Physiology, 2005, 569, 475-488.	1.3	36
56	Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6131-6136.	3.3	144
57	Synaptic vesicles. Current Biology, 2004, 14, R294-R297.	1.8	4
58	Synaptic gain control and homeostasis. Current Opinion in Neurobiology, 2003, 13, 560-567.	2.0	199
59	CELLBIOLOGY OF THEPRESYNAPTICTERMINAL. Annual Review of Neuroscience, 2003, 26, 701-728.	5.0	317
60	Synaptic Activity of the AFD Neuron in <i>Caenorhabditis elegans</i> Correlates with Thermotactic Memory. Journal of Neuroscience, 2003, 23, 373-376.	1.7	49
61	Gradients of substrate-bound laminin orient axonal specification of neurons. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12542-12547.	3.3	414
62	Dendritic Spines. Current Biology, 2002, 12, R5.	1.8	6
63	Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature, 2002, 420, 414-418.	13.7	434
64	Rapid turnover of actin in dendritic spines and its regulation by activity. Nature Neuroscience, 2002, 5, 239-246.	7.1	430
65	Visualizing Postendocytic Traffic of Synaptic Vesicles at Hippocampal Synapses. Neuron, 2001, 31, 593-605.	3.8	126
66	Inactivity Produces Increases in Neurotransmitter Release and Synapse Size. Neuron, 2001, 32, 673-682.	3.8	537
67	Spreading synapsins. Nature Neuroscience, 2001, 4, 1155-1157.	7.1	51
68	Synaptic plasticity: Rush hour traffic in the AMPA lanes. Current Biology, 2001, 11, R274-R277.	1.8	9
69	Reversal of synaptic vesicle docking at central synapses. Nature Neuroscience, 1999, 2, 503-507.	7.1	209
70	Optical detection of synaptic vesicle exocytosis and endocytosis. Current Opinion in Neurobiology, 1999, 9, 314-320.	2.0	35
71	Tailoring Uniform Coats for Synaptic Vesicles during Endocytosis. Neuron, 1999, 23, 419-422.	3.8	27
72	Getting the Membrane into Shape for Endocytosis. Neuron, 1999, 24, 2-4.	3.8	0

#	Article	IF	CITATIONS
73	Synaptic vesicles retain their identity through the endocytic cycle. Nature, 1998, 392, 497-501.	13.7	254
74	Synaptic plasticity: Step-wise strengthening. Current Biology, 1998, 8, R650-R653.	1.8	16
75	Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses. Neuron, 1997, 18, 599-612.	3.8	526
76	Synaptic plasticity: Neighborhood influences. Current Biology, 1997, 7, R512-R515.	1.8	3
77	Metabolic regulation of apoproteins of high-density lipoproteins by estrogen and progesterone in the baboon (Papio sp). Metabolism: Clinical and Experimental, 1990, 39, 544-552.	1.5	20
78	Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatumâ \in TM s olfactory tubercle. ELife, 0, 11, .	2.8	9