
D Joseph Jerry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8350649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10912-10916.	7.1	285
2	Development of Spontaneous Mammary Tumors in BALB/c p53 Heterozygous Mice. American Journal of Pathology, 2000, 157, 2151-2159.	3.8	178
3	Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. Journal of Materials Chemistry, 2008, 18, 1204.	6.7	167
4	A Genome-wide siRNA Screen Identifies Proteasome Addiction as a Vulnerability of Basal-like Triple-Negative Breast Cancer Cells. Cancer Cell, 2013, 24, 182-196.	16.8	147
5	Array-Based Sensing of Normal, Cancerous, and Metastatic Cells Using Conjugated Fluorescent Polymers. Journal of the American Chemical Society, 2010, 132, 1018-1022.	13.7	145
6	Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Research, 2019, 21, 96.	5.0	143
7	Radiation Acts on the Microenvironment to Affect Breast Carcinogenesis by Distinct Mechanisms that Decrease Cancer Latency and Affect Tumor Type. Cancer Cell, 2011, 19, 640-651.	16.8	137
8	Production of calves from G1 fibroblasts. Nature Biotechnology, 2001, 19, 1176-1178.	17.5	115
9	Weight gain following breast cancer diagnosis: Implication and proposed mechanisms. World Journal of Clinical Oncology, 2014, 5, 272.	2.3	113
10	Activation of Host Wound Responses in Breast Cancer Microenvironment. Clinical Cancer Research, 2009, 15, 7020-7028.	7.0	109
11	Cancer Cell Discrimination Using Host–Guest "Doubled―Arrays. Journal of the American Chemical Society, 2017, 139, 8008-8012.	13.7	109
12	Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Research and Treatment, 2012, 131, 1003-1012.	2.5	105
13	Cell surface-based differentiation of cell types and cancer states using a gold nanoparticle-GFP based sensing array. Chemical Science, 2010, 1, 134.	7.4	103
14	Effect of Fibroblast Donor Cell Age and Cell Cycle on Development of Bovine Nuclear Transfer Embryos In Vitro1. Biology of Reproduction, 2001, 64, 1487-1493.	2.7	95
15	Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. Journal of Materials Chemistry, 2009, 19, 6328.	6.7	76
16	Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nature Medicine, 1998, 4, 569-574.	30.7	71
17	Repression of Mammary Stem/Progenitor Cells by p53 Is Mediated by Notch and Separable from Apoptotic Activity. Stem Cells, 2011, 29, 119-127.	3.2	60
18	Infrequentp53 mutations in 7,12-dimethylbenz[a]anthracene–induced mammary tumors in BALB/c andp53 hemizygous mice. Molecular Carcinogenesis, 1994, 9, 175-183.	2.7	52

D JOSEPH JERRY

#	Article	IF	CITATIONS
19	Mitochondrial Dysfunction Impairs Tumor Suppressor p53 Expression/Function. Journal of Biological Chemistry, 2011, 286, 20297-20312.	3.4	52
20	Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?. Breast Cancer Research, 2002, 4, 101-11.	5.0	46
21	Loss of Heterozygosity Occurs via Mitotic Recombination in Trp53+/â^' Mice and Associates with Mammary Tumor Susceptibility of the BALB/c Strain. Cancer Research, 2004, 64, 5140-5147.	0.9	45
22	Oxybenzone Alters Mammary Gland Morphology in Mice Exposed During Pregnancy and Lactation. Journal of the Endocrine Society, 2018, 2, 903-921.	0.2	42
23	Genetic Mapping in Mice Identifies DMBT1 as a Candidate Modifier of Mammary Tumors and Breast Cancer Risk. American Journal of Pathology, 2007, 170, 2030-2041.	3.8	41
24	Effects of Benzophenone-3 and Propylparaben on Estrogen Receptor–Dependent R-Loops and DNA Damage in Breast Epithelial Cells and Mice. Environmental Health Perspectives, 2020, 128, 17002.	6.0	41
25	Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mammalian Genome, 2007, 18, 300-309.	2.2	39
26	Role of JNK in a Trp53-Dependent Mouse Model of Breast Cancer. PLoS ONE, 2010, 5, e12469.	2.5	38
27	Estrogen and progesterone regulate radiation-induced p53 activity in mammary epithelium through TGF-β-dependent pathways. Oncogene, 2005, 24, 6345-6353.	5.9	37
28	Regulation of Apoptosis During Mammary Involution by the p53 Tumor Suppressor Gene. Journal of Dairy Science, 2002, 85, 1103-1110.	3.4	36
29	Age-Associated Gene Expression in Normal Breast Tissue Mirrors Qualitative Age-at-Incidence Patterns for Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1735-1744.	2.5	34
30	Estrogen and progesterone induce persistent increases in p53-dependent apoptosis and suppress mammary tumors in BALB/c-Trp53+/-mice. Breast Cancer Research, 2008, 10, R43.	5.0	30
31	Transcriptional Responses to Estrogen and Progesterone in Mammary Gland Identify Networks Regulating p53 Activity. Endocrinology, 2008, 149, 4809-4820.	2.8	28
32	Exposure to low doses of oxybenzone during perinatal development alters mammary gland morphology in male and female mice. Reproductive Toxicology, 2020, 92, 66-77.	2.9	28
33	BALB/c alleles for Prkdc and Cdkn2a interact to modify tumor susceptibility in Trp53+/- mice. Cancer Research, 2003, 63, 2364-8.	0.9	26
34	Identification of a <i>DMBT1</i> polymorphism associated with increased breast cancer risk and decreased promoter activity. Human Mutation, 2010, 31, 60-66.	2.5	22
35	Estrogens, regulation of p53 and breast cancer risk: a balancing act. Cellular and Molecular Life Sciences, 2010, 67, 1017-1023.	5.4	21
36	Virus-Inspired Approach to Nonviral Gene Delivery Vehicles. Biomacromolecules, 2009, 10, 2189-2193.	5.4	20

D JOSEPH JERRY

#	Article	IF	CITATIONS
37	Genetic variation in sensitivity to estrogens and breast cancer risk. Mammalian Genome, 2018, 29, 24-37.	2.2	20
38	Gene expression signature of atypical breast hyperplasia and regulation by SFRP1. Breast Cancer Research, 2019, 21, 76.	5.0	19
39	Epithelial cell cycling predicts p53 responsiveness to γ-irradiation during post-natal mammary gland development. Development (Cambridge), 2002, 129, 2997-3008.	2.5	17
40	Expression of MDM2 during mammary tumorigenesis. , 1999, 81, 292-298.		16
41	Impaired Mitochondrial Metabolism and Mammary Carcinogenesis. Journal of Mammary Cland Biology and Neoplasia, 2013, 18, 75-87.	2.7	16
42	Regulation of p53 and its targets during involution of the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 1999, 4, 177-181.	2.7	15
43	The Role of Activin in Mammary Gland Development and Oncogenesis. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 117-126.	2.7	15
44	Regulation of cancer stem cells by p53. Breast Cancer Research, 2008, 10, 304.	5.0	13
45	Sensitivity to DNA Damage Is a Common Component of Hormone-Based Strategies for Protection of the Mammary Gland. Molecular Cancer Research, 2005, 3, 435-442.	3.4	12
46	Pathways Contributing to Development of Spontaneous Mammary Tumors in BALB/c-Trp53+/â^' Mice. American Journal of Pathology, 2010, 176, 1421-1432.	3.8	12
47	Exposure to Propylparaben During Pregnancy and Lactation Induces Long-Term Alterations to the Mammary Gland in Mice. Endocrinology, 2021, 162, .	2.8	10
48	Epithelial cell cycling predicts p53 responsiveness to gamma-irradiation during post-natal mammary gland development. Development (Cambridge), 2002, 129, 2997-3008.	2.5	8
49	Map Making in the 21st Century: Charting Breast Cancer Susceptibility Pathways in Rodent Models. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 57-64.	2.7	7
50	Oncogenic transformation of mammary epithelial cells by transforming growth factor beta independent of mammary stem cell regulation. Cancer Cell International, 2013, 13, 74.	4.1	6
51	The use of patientâ€derived breast tissue explants to study macrophage polarization and the effects of environmental chemical exposure. Immunology and Cell Biology, 2020, 98, 883-896.	2.3	6
52	Inter-Individual Variation in Response to Estrogen in Human Breast Explants. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 51-68.	2.7	6
53	Genetic modifiers regulating DNA replication and double-strand break repair are associated with differences in mammary tumors in mouse models of Li-Fraumeni syndrome. Oncogene, 2021, 40, 5026-5037.	5.9	6
54	Hormonal control of p53 and chemoprevention. Breast Cancer Research, 2002, 4, 91-4.	5.0	5

D JOSEPH JERRY

#	Article	IF	CITATIONS
55	DNA methylation in paired breast epithelial and white blood cells from women undergoing reduction mammoplasty. Anticancer Research, 2014, 34, 2985-90.	1.1	5
56	Individualâ€ s pecific variation in the respiratory activities of HMECs and their bioenergetic response to IGF1 and TNFI±. Journal of Cellular Physiology, 2017, 232, 2750-2765.	4.1	3
57	The Mouse Mammary Gland: a Tool to Inform Adolescents About Environmental Causes of Breast Cancer. Journal of Cancer Education, 2020, 35, 1094-1100.	1.3	3
58	Interindividual variation contributes to differential PCB 126 induced gene expression in primary breast epithelial cells and tissues. Ecotoxicology and Environmental Safety, 2022, 241, 113722.	6.0	2
59	Sterilization of Silastic Capsules Containing $17\hat{l}^2$ -Estradiol for Effective Hormone Delivery in Mus musculus. Journal of the American Association for Laboratory Animal Science, 2018, , .	1.2	1
60	Exposure to oxybenzone during the perinatal period disrupts development of the male and female mouse mammary gland. Reproductive Toxicology, 2018, 80, 154.	2.9	0
61	Mitochondrial Dysfunction Impairs Tumor Suppressor P53â€Mediated Cell Death. FASEB Journal, 2010, 24, lb111.	0.5	0
62	Mapping the Chromosome through a Novel Use of GIS and Spatial Analysis. , 2015, , 5573-5583.		0

Mapping the Chromosome through a Novel Use of GIS and Spatial Analysis. , 2015, , 5573-5583. 62

5