
Rachel Marsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8349009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta- and Mega-Analysis. American Journal of Psychiatry, 2017, 174, 60-69.	7.2	268
2	The Neural Circuits That Generate Tics in Tourette's Syndrome. American Journal of Psychiatry, 2011, 168, 1326-1337.	7.2	259
3	A developmental fMRI study of self-regulatory control. Human Brain Mapping, 2006, 27, 848-863.	3.6	231
4	An fMRI Study of the Effects of Psychostimulants on Default-Mode Processing During Stroop Task Performance in Youths With ADHD. American Journal of Psychiatry, 2009, 166, 1286-1294.	7.2	214
5	Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 2008, 47, 1233-1251.	0.5	206
6	Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. American Journal of Psychiatry, 2018, 175, 453-462.	7.2	197
7	Functional Disturbances Within Frontostriatal Circuits Across Multiple Childhood Psychopathologies. American Journal of Psychiatry, 2009, 166, 664-674.	7.2	173
8	Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa. Archives of General Psychiatry, 2009, 66, 51.	12.3	171
9	Impulsivity in the general population: A national study. Journal of Psychiatric Research, 2012, 46, 994-1001.	3.1	169
10	Reduced functional connectivity within the limbic corticoâ€striatoâ€thalamoâ€cortical loop in unmedicated adults with obsessiveâ€compulsive disorder. Human Brain Mapping, 2014, 35, 2852-2860.	3.6	155
11	Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry, 2021, 78, 47.	11.0	136
12	Association of Birth During the COVID-19 Pandemic With Neurodevelopmental Status at 6 Months in Infants With and Without In Utero Exposure to Maternal SARS-CoV-2 Infection. JAMA Pediatrics, 2022, 176, e215563.	6.2	135
13	An fMRI Study of Self-Regulatory Control and Conflict Resolution in Adolescents With Bulimia Nervosa. American Journal of Psychiatry, 2011, 168, 1210-1220.	7.2	131
14	Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. American Journal of Psychiatry, 2020, 177, 834-843.	7.2	120
15	A Developmental fMRI Study of Self-Regulatory Control in Tourette's Syndrome. American Journal of Psychiatry, 2007, 164, 955-966.	7.2	119
16	Habit Learning in Tourette Syndrome. Archives of General Psychiatry, 2004, 61, 1259.	12.3	114
17	An fMRI study of the brain responses of traumatized mothers to viewing their toddlers during separation and play. Social Cognitive and Affective Neuroscience, 2012, 7, 969-979.	3.0	104
18	An fMRI Study of Frontostriatal Circuits During the Inhibition of Eye Blinking in Persons With Tourette Syndrome. American Journal of Psychiatry, 2010, 167, 341-349.	7.2	85

#	Article	IF	CITATIONS
19	Frontostriatal Circuits and the Development of Bulimia Nervosa. Frontiers in Behavioral Neuroscience, 2014, 8, 395.	2.0	76
20	Annual Research Review: The neurobehavioral development of multiple memory systems – implications for childhood and adolescent psychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2014, 55, 582-610.	5.2	74
21	Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive Disorder: Findings From the ENIGMA Consortium. Biological Psychiatry, 2020, 87, 1022-1034.	1.3	73
22	Toward valid and reliable brain imaging results in eating disorders. International Journal of Eating Disorders, 2018, 51, 250-261.	4.0	69
23	Altered Activation in Fronto-Striatal Circuits During Sequential Processing of Conflict in Unmedicated Adults with Obsessive-Compulsive Disorder. Biological Psychiatry, 2014, 75, 615-622.	1.3	68
24	Increased functional connectivity between the default mode and salience networks in unmedicated adults with obsessive-compulsive disorder. Human Brain Mapping, 2017, 38, 678-687.	3.6	62
25	An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group. Frontiers in Neuroinformatics, 2018, 12, 102.	2.5	59
26	OUP accepted manuscript. Brain, 2020, 143, 684-700.	7.6	53
27	A virtual reality-based FMRI study of reward-based spatial learning. Neuropsychologia, 2010, 48, 2912-2921.	1.6	51
28	An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Human Brain Mapping, 2022, 43, 23-36.	3.6	51
29	Anatomical Characteristics of the Cerebral Surface in Bulimia Nervosa. Biological Psychiatry, 2015, 77, 616-623.	1.3	50
30	Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex. Journal of Neuroscience, 2011, 31, 16208-16216.	3.6	48
31	Reward-Based Spatial Learning in Unmedicated Adults With Obsessive-Compulsive Disorder. American Journal of Psychiatry, 2015, 172, 383-392.	7.2	48
32	Basolateral amygdala–ventromedial prefrontal cortex connectivity predicts cognitive behavioural therapy outcome in adults with obsessive–compulsive disorder. Journal of Psychiatry and Neuroscience, 2017, 42, 378-385.	2.4	43
33	Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters. Translational Psychiatry, 2020, 10, 342.	4.8	43
34	Perceptual-motor skill learning in Gilles de la Tourette syndromeEvidence for multiple procedural learning and memory systems. Neuropsychologia, 2005, 43, 1456-1465.	1.6	36
35	Frontoparietal and default mode network connectivity varies with age and intelligence. Developmental Cognitive Neuroscience, 2021, 48, 100928.	4.0	35
36	Changes in corticostriatal connectivity during reinforcement learning in humans. Human Brain Mapping, 2015, 36, 793-803.	3.6	34

#	Article	IF	CITATIONS
37	White matter microstructure and its relation to clinical features of obsessive–compulsive disorder: findings from the ENIGMA OCD Working Group. Translational Psychiatry, 2021, 11, 173.	4.8	33
38	Increased Functional Connectivity Between Ventral Attention and Default Mode Networks in Adolescents With Bulimia Nervosa. Journal of the American Academy of Child and Adolescent Psychiatry, 2019, 58, 232-241.	0.5	32
39	Reward-Based Spatial Learning in Teens With Bulimia Nervosa. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, 962-971.e3.	0.5	31
40	Neural Correlates of Reward-Based Spatial Learning in Persons with Cocaine Dependence. Neuropsychopharmacology, 2014, 39, 545-555.	5.4	30
41	Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa. Journal of Psychiatry and Neuroscience, 2018, 43, 151-160.	2.4	27
42	Altered network connectivity predicts response to cognitive-behavioral therapy in pediatric obsessive–compulsive disorder. Neuropsychopharmacology, 2020, 45, 1232-1240.	5.4	26
43	Abnormal frontoâ€striatal activation as a marker of threshold and subthreshold Bulimia Nervosa. Human Brain Mapping, 2018, 39, 1796-1804.	3.6	25
44	Altered White Matter Microstructure in Adolescents and Adults with Bulimia Nervosa. Neuropsychopharmacology, 2016, 41, 1841-1848.	5.4	24
45	Altered frontal interhemispheric and frontoâ€limbic structural connectivity in unmedicated adults with obsessiveâ€compulsive disorder. Human Brain Mapping, 2018, 39, 803-810.	3.6	24
46	Task-based fMRI predicts response and remission to exposure therapy in obsessive-compulsive disorder. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20346-20353.	7.1	22
47	Cognitive Control in Pediatric Obsessive-Compulsive and Anxiety Disorders: Brain-Behavioral Targets for Early Intervention. Biological Psychiatry, 2021, 89, 697-706.	1.3	22
48	Reduced Inferior and Orbital Frontal Thickness in Adolescent Bulimia Nervosa Persists Over Two-Year Follow-Up. Journal of the American Academy of Child and Adolescent Psychiatry, 2017, 56, 866-874.e7.	0.5	20
49	Neural correlates of cognitive control deficits in children with reading disorder. Brain Imaging and Behavior, 2020, 14, 1531-1542.	2.1	20
50	Salience network connectivity and social processing in children with nonverbal learning disability or autism spectrum disorder Neuropsychology, 2019, 33, 135-143.	1.3	19
51	The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder. Translational Psychiatry, 2022, 12, 70.	4.8	19
52	Associations between Amygdala-Prefrontal Functional Connectivity and Age Depend on Neighborhood Socioeconomic Status. Cerebral Cortex Communications, 2020, 1, tgaa033.	1.6	17
53	Development of Posterior Medial Frontal Cortex Function in Pediatric Obsessive-Compulsive Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2018, 57, 397-406.	0.5	16
54	Pandemic beyond the virus: maternal COVID-related postnatal stress is associated with infant temperament. Pediatric Research, 2023, 93, 253-259.	2.3	16

#	Article	IF	CITATIONS
55	Subcortical Shape Abnormalities in Bulimia Nervosa. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 1070-1079.	1.5	14
56	Prenatal environmental tobacco smoke exposure alters children's cognitive control circuitry: A preliminary study. Environment International, 2021, 155, 106516.	10.0	12
57	Spatial Network Connectivity and Spatial Reasoning Ability in Children with Nonverbal Learning Disability. Scientific Reports, 2020, 10, 561.	3.3	11
58	Association and Causation in Brain Imaging in the Case of OCD: Response to McKay et al American Journal of Psychiatry, 2017, 174, 597-599.	7.2	10
59	Verbal–spatial <scp>IQ</scp> discrepancies impact brain activation associated with the resolution of cognitive conflict in children and adolescents. Developmental Science, 2018, 21, e12550.	2.4	10
60	Obsessive-Compulsive Symptoms Among Children in the Adolescent Brain and Cognitive Development Study: Clinical, Cognitive, and Brain Connectivity Correlates. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 399-409.	1.5	10
61	Network-based functional connectivity predicts response to exposure therapy in unmedicated adults with obsessive–compulsive disorder. Neuropsychopharmacology, 2021, 46, 1035-1044.	5.4	9
62	Altered frontoâ€amygdalar functional connectivity predicts response to cognitive behavioral therapy in pediatric obsessiveâ€compulsive disorder. Depression and Anxiety, 2021, 38, 836-845.	4.1	9
63	Structural neural markers of response to cognitive behavioral therapy in pediatric obsessiveâ€compulsive disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 1299-1308.	5.2	8
64	Self-Regulatory Control and Habit Learning in the Development of Eating Disorders. Current Psychiatry Reviews, 2007, 3, 73-83.	0.9	6
65	Dysfunctional frontostriatal control systems in bulimia nervosa. Future Neurology, 2009, 4, 383-387.	0.5	6
66	A Virtual Radial Arm Maze for the Study of Multiple Memory Systems in a Functional Magnetic Resonance Imaging Environment. The International Journal of Virtual Reality, 2019, 11, 63-76.	2.2	6
67	Implicit learning on a probabilistic classification task in adults and adolescents with Bulimia Nervosa. Journal of Psychiatric Research, 2016, 77, 35-41.	3.1	5
68	A longitudinal functional magnetic resonance imaging study of task control circuits and bulimic symptoms over adolescence. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 752-762.	5.2	5
69	Deficient Functioning of Frontostriatal Circuits DuringÂthe Resolution of Cognitive Conflict in Cannabis-Using Youth. Journal of the American Academy of Child and Adolescent Psychiatry, 2019, 58, 702-711.	0.5	5
70	A Virtual Radial Arm Maze for the Study of Multiple Memory Systems in a Functional Magnetic Resonance Imaging Environment. The International Journal of Virtual Reality, 2012, 11, 63-76.	2.2	5
71	Altered prefrontal activation during the inhibition of eating responses in women with bulimia nervosa. Psychological Medicine, 2023, 53, 3580-3590.	4.5	3
72	Sex-specific neural activity when resolving cognitive interference in individuals with or without prior internalizing disorders. Psychiatry Research - Neuroimaging, 2016, 249, 76-83.	1.8	2

#	Article	IF	CITATIONS
73	Evidence for trial-by-trial dynamic adjustment of task control in unmedicated adults with OCD. Behaviour Research and Therapy, 2020, 126, 103572.	3.1	2
74	A quality control pipeline for probabilistic reconstruction of white-matter pathways. Journal of Neuroscience Methods, 2021, 353, 109099.	2.5	2
75	Disturbances of fronto-striatal circuits in Tourette syndrome and obsessive-compulsive disorder. , 0, , 199-216.		1
76	Subcortical shape in pediatric and adult obsessive ompulsive disorder. Depression and Anxiety, 2022, 39, 504-514.	4.1	1
77	21.1 COGNITIVE-BEHAVIORAL THERAPY–BASED CHANGES IN CONTROL AND REWARD CIRCUITS IN PEDIATRIC OBSESSIVE-COMPULSIVE DISORDER. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, S290.	0.5	0
78	2.2 ATTENTIONAL BIAS TO FOOD CUES AND FRONTOSTRIATAL CIRCUIT FUNCTION IN ADOLESCENTS WITH BULIMIA NERVOSA. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, S121.	0.5	0
79	2.13 DEFICIENT FRONTO-STRIATAL ACTIVATION AS AN EARLY BIOMARKER FOR BULIMIA NERVOSA. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, S125.	0.5	0
80	2.25 CONFLICT-RELATED ACTIVATION OF POSTERIOR MEDIAL FRONTAL CORTEX IN PEDIATRIC READING DISORDER. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55, S128-S129.	0.5	0
81	780. CBT-Based Changes in Control and Reward Circuits in Pediatric OCD. Biological Psychiatry, 2017, 81, S317.	1.3	0