
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346749/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	InÂvitro reconstitution reveals cooperative mechanisms of adapter protein-mediated activation of phospholipase C-γ1 in T cells. Journal of Biological Chemistry, 2022, 298, 101680.	3.4	5
2	Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice. Hepatology, 2021, 73, 2206-2222.	7.3	43
3	C-FGF23 peptide alleviates hypoferremia during acute inflammation. Haematologica, 2021, 106, 391-403.	3.5	19
4	Structural basis of FGF23 hormone signaling. , 2021, , 299-318.		0
5	Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nature Communications, 2021, 12, 7256.	12.8	32
6	Curtailing FGF19's mitogenicity by suppressing its receptor dimerization ability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29025-29034.	7.1	15
7	Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nature Reviews Rheumatology, 2020, 16, 547-564.	8.0	81
8	Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling. Journal of Experimental and Clinical Cancer Research, 2020, 39, 276.	8.6	14
9	FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11, 1421.	12.8	67
10	Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation. Nature Chemical Biology, 2020, 16, 267-277.	8.0	31
11	A Conserved Allosteric Pathway in Tyrosine Kinase Regulation. Structure, 2019, 27, 1308-1315.e3.	3.3	16
12	Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine, 2019, 48, 462-477.	6.1	17
13	Structural Biology of the FGF7 Subfamily. Frontiers in Genetics, 2019, 10, 102.	2.3	36
14	A G protein–coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone FGF23. JCI Insight, 2019, 4, .	5.0	16
15	α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 2018, 553, 461-466.	27.8	348
16	Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney International, 2018, 93, 95-109.	5.2	117
17	Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Scientific Reports, 2018, 8, 15973.	3.3	12
18	Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB Journal, 2018, 32, 3752-3764.	0.5	85

#	Article	IF	CITATIONS
19	A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination. F1000Research, 2018, 7, 872.	1.6	52
20	Genetic testing facilitates prepubertal diagnosis of congenital hypogonadotropic hypogonadism. Clinical Genetics, 2017, 92, 213-216.	2.0	14
21	FGF-FCFR Signaling in Cancer. , 2017, , 577-590.		0
22	Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-Linked Hypophosphatemia Via the Selective Modulation of Phosphate Reabsorption. Journal of Bone and Mineral Research, 2017, 32, 2062-2073.	2.8	22
23	Characterization of Disease Causing Mutations Associated with FGF Receptor Tyrosine Kinases using NMR Spectroscopy. Biophysical Journal, 2017, 112, 64a.	0.5	о
24	A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovascular Research, 2017, 113, 1585-1602.	3.8	23
25	<i> <scp>KLB</scp> </i> , encoding βâ€Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Molecular Medicine, 2017, 9, 1379-1397.	6.9	77
26	Uncoupling the Mitogenic and Metabolic Functions of FGF1 by Tuning FGF1-FGF Receptor Dimer Stability. Cell Reports, 2017, 20, 1717-1728.	6.4	71
27	Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Structure, 2017, 25, 1325-1336.e3.	3.3	25
28	Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. ELife, 2017, 6, .	6.0	38
29	β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight, 2017, 2, .	5.0	41
30	NMR Experiments on Wild-Type and Mutant Fibroblast Growth Factor Receptor Kinases Reveal Conformational Dynamics Associated with Enzyme Activation. Biophysical Journal, 2016, 110, 220a.	0.5	0
31	Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase Cγ. Molecular Cell, 2016, 61, 324.	9.7	Ο
32	Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity. Journal of Biological Chemistry, 2016, 291, 18730-18739.	3.4	10
33	Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury. Scientific Reports, 2016, 6, 31026.	3.3	58
34	Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase Cl³. Molecular Cell, 2016, 61, 98-110.	9.7	48
35	FGF21 mediates alcohol-induced adipose tissue lipolysis by activation of systemic release of catecholamine in mice. Journal of Lipid Research, 2015, 56, 1481-1491.	4.2	83
36	DFG-out Mode of Inhibition by an Irreversible Type-1 Inhibitor Capable of Overcoming Gate-Keeper Mutations in FGF Receptors. ACS Chemical Biology, 2015, 10, 299-309.	3.4	44

#	Article	IF	CITATIONS
37	Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genetics in Medicine, 2015, 17, 651-659.	2.4	55
38	The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrology Dialysis Transplantation, 2015, 30, 223-233.	0.7	124
39	FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO Journal, 2014, 33, n/a-n/a.	7.8	159
40	Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4869-77.	7.1	154
41	Tyr Phosphorylation of PDP1 Toggles Recruitment between ACAT1 and SIRT3 to Regulate the Pyruvate Dehydrogenase Complex. Molecular Cell, 2014, 53, 534-548.	9.7	247
42	Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding. Diabetes, 2014, 63, 4057-4063.	0.6	467
43	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.	27.8	201
44	FGF-FGFR Signaling in Cancer. , 2014, , 1-14.		0
45	The N550K/H Mutations in FGFR2 Confer Differential Resistance to PD173074, Dovitinib, and Ponatinib ATP-Competitive Inhibitors. Neoplasia, 2013, 15, 975-IN30.	5.3	116
46	Cracking the Molecular Origin of Intrinsic Tyrosine Kinase Activity through Analysis of Pathogenic Gain-of-Function Mutations. Cell Reports, 2013, 4, 376-384.	6.4	44
47	Exploring mechanisms of FCF signalling through the lens of structural biology. Nature Reviews Molecular Cell Biology, 2013, 14, 166-180.	37.0	449
48	Structural Mimicry of A-Loop Tyrosine Phosphorylation by a Pathogenic FGF Receptor 3 Mutation. Structure, 2013, 21, 1889-1896.	3.3	39
49	Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism. American Journal of Human Genetics, 2013, 92, 725-743.	6.2	227
50	Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling Pathway That Regulates PTH Secretion. PLoS Genetics, 2013, 9, e1003975.	3.5	139
51	FGF23-Induced Hypophosphatemia Persists inHypMice Deficient in the WNT Coreceptor Lrp6. Contributions To Nephrology, 2013, 180, 124-137.	1.1	11
52	Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology. Cold Spring Harbor Perspectives in Biology, 2013, 5, a015958-a015958.	5.5	195
53	Arterial Klotho Expression and FGF23 Effects on Vascular Calcification and Function. PLoS ONE, 2013, 8, e60658.	2.5	123
54	Urothelial tumor initiation requires deregulation of multiple signaling pathways: implications in target-based therapies. Carcinogenesis, 2012, 33, 770-780.	2.8	20

#	Article	IF	CITATIONS
55	Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands. Molecular and Cellular Biology, 2012, 32, 1944-1954.	2.3	74
56	Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E694-E699.	3.6	136
57	Conversion of a Paracrine Fibroblast Growth Factor into an Endocrine Fibroblast Growth Factor. Journal of Biological Chemistry, 2012, 287, 29134-29146.	3.4	79
58	Grb2, a Double-Edged Sword of Receptor Tyrosine Kinase Signaling. Science Signaling, 2012, 5, pe49.	3.6	71
59	Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1. Journal of Biological Chemistry, 2012, 287, 3067-3078.	3.4	37
60	FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2–SGK1 signaling pathway. Bone, 2012, 51, 621-628.	2.9	176
61	Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3143-3148.	7.1	331
62	The Structural Biology of the FGF19 Subfamily. Advances in Experimental Medicine and Biology, 2012, 728, 1-24.	1.6	70
63	The Alternatively Spliced Acid Box Region Plays a Key Role in FGF Receptor Autoinhibition. Structure, 2012, 20, 77-88.	3.3	66
64	Regulation of serum 1,25(OH) ₂ Vitamin D ₃ levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. American Journal of Physiology - Renal Physiology, 2011, 301, F371-F377.	2.7	93
65	Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. Journal of Clinical Investigation, 2011, 121, 3220-3232.	8.2	125
66	Influence of Heparin Mimetics on Assembly of the FGF·FGFR4 Signaling Complex. Journal of Biological Chemistry, 2010, 285, 26628-26640.	3.4	30
67	Nonsense Mutations in <i>FGF8</i> Gene Causing Different Degrees of Human Gonadotropin-Releasing Deficiency. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3491-3496.	3.6	70
68	Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse. Molecular Endocrinology, 2010, 24, 2050-2064.	3.7	579
69	Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 407-412.	7.1	327
70	Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix. Molecular and Cellular Biology, 2009, 29, 4663-4678.	2.3	44
71	Impaired Fibroblast Growth Factor Receptor 1 Signaling as a Cause of Normosmic Idiopathic Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4380-4390.	3.6	82
72	Differential Interactions of FGFs with Heparan Sulfate Control Gradient Formation and Branching Morphogenesis. Science Signaling, 2009, 2, ra55.	3.6	178

#	Article	IF	CITATIONS
73	FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. American Journal of Physiology - Renal Physiology, 2009, 297, F282-F291.	2.7	361
74	FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10853-10858.	7.1	605
75	Loss-of-Function Fibroblast Growth Factor Receptor-2 Mutations in Melanoma. Molecular Cancer Research, 2009, 7, 41-54.	3.4	112
76	Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2009, 284, 17883-17896.	3.4	121
77	The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 2009, 8, 235-253.	46.4	1,548
78	Compositional Analysis of Heparin/Heparan Sulfate Interacting with Fibroblast Growth Factor·Fibroblast Growth Factor Receptor Complexes. Biochemistry, 2009, 48, 8379-8386.	2.5	67
79	Graded Levels of FGF Protein Span the Midbrain and Can Instruct Graded Induction and Repression of Neural Mapping Labels. Neuron, 2009, 62, 773-780.	8.1	27
80	<i>In vivo</i> genetic evidence for klothoâ€dependent, fibroblast growth factor 23 (Fgf23) â€mediated regulation of systemic phosphate homeostasis. FASEB Journal, 2009, 23, 433-441.	0.5	235
81	Somatic <i>FGF9</i> mutations in colorectal and endometrial carcinomas associated with membranous l² -catenin. Human Mutation, 2008, 29, 390-397.	2.5	31
82	Inhibition of Growth Hormone Signaling by the Fasting-Induced Hormone FGF21. Cell Metabolism, 2008, 8, 77-83.	16.2	353
83	FCF-23–Klotho signaling stimulates proliferation and prevents vitamin D–induced apoptosis. Journal of Cell Biology, 2008, 182, 459-465.	5.2	110
84	A crystallographic snapshot of tyrosine <i>trans</i> -phosphorylation in action. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19660-19665.	7.1	61
85	Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. Journal of Clinical Investigation, 2008, 118, 2822-2831.	8.2	348
86	Impaired FGF signaling contributes to cleft lip and palate. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4512-4517.	7.1	246
87	βKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7432-7437.	7.1	516
88	Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Molecular and Cellular Biology, 2007, 27, 3417-3428.	2.3	457
89	The parathyroid is a target organ for FGF23 in rats. Journal of Clinical Investigation, 2007, 117, 4003-8.	8.2	802
90	Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. Journal of Biological Chemistry, 2007, 282, 26687-26695.	3.4	654

#	Article	IF	CITATIONS
91	Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21. Cell Metabolism, 2007, 5, 415-425.	16.2	1,306
92	A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases. Molecular Cell, 2007, 27, 717-730.	9.7	221
93	Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene, 2007, 26, 7158-7162.	5.9	284
94	Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. Journal of Clinical Investigation, 2007, 117, 457-463.	8.2	338
95	A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. Journal of Clinical Investigation, 2007, 117, 2684-2691.	8.2	390
96	Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Molecular and Cellular Endocrinology, 2006, 254-255, 60-69.	3.2	176
97	Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6281-6286.	7.1	225
98	Hedgehogs like it sweet, too. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17069-17070.	7.1	2
99	Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes and Development, 2006, 20, 185-198.	5.9	171
100	A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1. Journal of Biological Chemistry, 2006, 281, 867-875.	3.4	78
101	Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 2006, 281, 15694-15700.	3.4	986
102	A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Current Opinion in Structural Biology, 2005, 15, 506-516.	5.7	132
103	Identification of Phosphopeptides by MALDI Q-TOF MS in Positive and Negative Ion Modes after Methyl Esterification. Molecular and Cellular Proteomics, 2005, 4, 809-818.	3.8	48
104	Analysis of the Biochemical Mechanisms for the Endocrine Actions of Fibroblast Growth Factor-23. Endocrinology, 2005, 146, 4647-4656.	2.8	192
105	Analysis of Mutations in Fibroblast Growth Factor (FGF) and a Pathogenic Mutation in FGF Receptor (FGFR) Provides Direct Evidence for the Symmetric Two-End Model for FGFR Dimerization. Molecular and Cellular Biology, 2005, 25, 671-684.	2.3	58
106	Structural basis for fibroblast growth factor receptor activation. Cytokine and Growth Factor Reviews, 2005, 16, 107-137.	7.2	625
107	Understanding the molecular basis of Apert syndrome. Plastic and Reconstructive Surgery, 2005, 115, 264-70.	1.4	53
108	Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Human Molecular Genetics, 2004, 13, 2313-2324.	2.9	131

#	Article	IF	CITATIONS
109	Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 935-940.	7.1	168
110	Kinetic Model for FGF, FGFR, and Proteoglycan Signal Transduction Complex Assemblyâ€. Biochemistry, 2004, 43, 4724-4730.	2.5	163
111	Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology with FGFs. Journal of Biological Chemistry, 2003, 278, 34226-34236.	3.4	221
112	Structure-based mutational analyses in FGF7 identify new residues involved in specific interaction with FGFR2IIIb. FEBS Letters, 2003, 552, 150-154.	2.8	13
113	Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2266-2271.	7.1	161
114	Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Human Molecular Genetics, 2003, 13, 69-78.	2.9	118
115	Structural Basis for Activation of Fibroblast Growth Factor Signaling by Sucrose Octasulfate. Molecular and Cellular Biology, 2002, 22, 7184-7192.	2.3	51
116	Synthesis of sulfosucrose derivatives for evaluation as regulators of fibroblast growth factor activity. Tetrahedron Letters, 2002, 43, 8047-8049.	1.4	4
117	Identification of Receptor and Heparin Binding Sites in Fibroblast Growth Factor 4 by Structure-Based Mutagenesis. Molecular and Cellular Biology, 2001, 21, 5946-5957.	2.3	62
118	Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7182-7187.	7.1	187
119	Crystal Structure of Fibroblast Growth Factor 9 Reveals Regions Implicated in Dimerization and Autoinhibition. Journal of Biological Chemistry, 2001, 276, 4322-4329.	3.4	62
120	Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization. Molecular Cell, 2000, 6, 743-750.	9.7	1,024
121	Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-Receptor Specificity. Cell, 2000, 101, 413-424.	28.9	370
122	SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Research, 2000, 60, 4152-60.	0.9	378
123	Different Tyrosine Autophosphorylation Requirements in Fibroblast Growth Factor Receptor-1 Mediate Urokinase-Type Plasminogen Activator Induction and Mitogenesis. Molecular Biology of the Cell, 1999, 10, 23-33.	2.1	27
124	Structural Basis for FGF Receptor Dimerization and Activation. Cell, 1999, 98, 641-650.	28.9	575
125	Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO Journal, 1998, 17, 5896-5904.	7.8	443
126	Autoregulatory Mechanisms in Protein-tyrosine Kinases. Journal of Biological Chemistry, 1998, 273, 11987-11990.	3.4	262

#	Article	IF	CITATIONS
127	Differential pre- and postsynaptic modulation of chemical transmission in the squid giant synapse by tyrosine phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1990-1994.	7.1	18
128	Structures of the Tyrosine Kinase Domain of Fibroblast Growth Factor Receptor in Complex with Inhibitors. Science, 1997, 276, 955-960.	12.6	1,047
129	Structure of the FGF Receptor Tyrosine Kinase Domain Reveals a Novel Autoinhibitory Mechanism. Cell, 1996, 86, 577-587.	28.9	378
130	Induction of Urokinase-type Plasminogen Activator by Fibroblast Growth Factor (FGF)-2 Is Dependent on Expression of FGF Receptors and Does Not Require Activation of Phospholipase Cl³1. Journal of Biological Chemistry, 1996, 271, 31154-31159.	3.4	21
131	Identification of Six Novel Autophosphorylation Sites on Fibroblast Growth Factor Receptor 1 and Elucidation of Their Importance in Receptor Activation and Signal Transduction. Molecular and Cellular Biology, 1996, 16, 977-989.	2.3	360
132	Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature, 1995, 373, 536-539.	27.8	932
133	Reduced Activation of RAF-1 and MAP Kinase by a Fibroblast Growth Factor Receptor Mutant Deficient in Stimulation of Phosphatidylinositol Hydrolysis. Journal of Biological Chemistry, 1995, 270, 5065-5072.	3.4	94
134	Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. Journal of Biological Chemistry, 1994, 269, 14419-23.	3.4	66
135	Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. Journal of Biological Chemistry, 1994, 269, 17056-61.	3.4	95
136	Aggregation-induced activation of the epidermal growth factor receptor protein tyrosine kinase. Biochemistry, 1993, 32, 8742-8748.	2.5	55
137	The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science, 1993, 260, 1953-1955.	12.6	608
138	Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature, 1992, 358, 681-684.	27.8	438
139	Role of SH2-containing Proteins in Cellular Signaling by Receptor Tyrosine Kinases. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 67-74.	1.1	15
140	SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C gamma. EMBO Journal, 1992, 11, 559-67.	7.8	127
141	Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell, 1991, 65, 83-90.	28.9	674