List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/834652/publications.pdf Version: 2024-02-01

YINCRUI DENC

#	Article	lF	CITATIONS
1	Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration. Bioactive Materials, 2022, 13, 9-22.	15.6	26
2	Biomaterial-mediated presentation of wnt5a mimetic ligands enhances chondrogenesis and metabolism of stem cells by activating non-canonical Wnt signaling. Biomaterials, 2022, 281, 121316.	11.4	8
3	Phage-Derived Depolymerase as an Antibiotic Adjuvant Against Multidrug-Resistant Acinetobacter baumannii. Frontiers in Microbiology, 2022, 13, 845500.	3.5	21
4	The Effect of the Nanoparticle Shape on T Cell Activation. Small, 2022, 18, e2107373.	10.0	15
5	Biomaterial-Mediated Presentation of Jagged-1 Mimetic Ligand Enhances Cellular Activation of Notch Signaling and Bone Regeneration. ACS Nano, 2022, 16, 1051-1062.	14.6	14
6	Adhesive Hemostatic Hydrogel with Ultrafast Gelation Arrests Acute Upper Gastrointestinal Hemorrhage in Pigs. Advanced Functional Materials, 2022, 32, .	14.9	48
7	Magnesiumâ€Encapsulated Injectable Hydrogel and 3Dâ€Engineered Polycaprolactone Conduit Facilitate Peripheral Nerve Regeneration. Advanced Science, 2022, 9, .	11.2	45
8	Surface decoration of development-inspired synthetic N-cadherin motif via Ac-BP promotes osseointegration of metal implants. Bioactive Materials, 2021, 6, 1353-1364.	15.6	10
9	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	10.2	32
10	Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. Nano Letters, 2021, 21, 3225-3236.	9.1	28
11	Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS Applied Materials & Interfaces, 2021, 13, 11609-11620.	8.0	14
12	Nanomedicineâ€Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Advanced Functional Materials, 2021, 31, 2011171.	14.9	84
13	Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. Science Advances, 2021, 7, .	10.3	118
14	Ultrafast Selfâ€Gelling and Wet Adhesive Powder for Acute Hemostasis and Wound Healing. Advanced Functional Materials, 2021, 31, 2102583.	14.9	146
15	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	47.7	161
16	Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nature Communications, 2021, 12, 3514.	12.8	92
17	Immunoregulation of Macrophages by Controlling Winding and Unwinding of Nanohelical Ligands. Advanced Functional Materials, 2021, 31, 2103409.	14.9	19
18	Rationally designed protein cross-linked hydrogel for bone regeneration via synergistic release of magnesium and zinc ions. Biomaterials, 2021, 274, 120895.	11.4	55

#	Article	IF	CITATIONS
19	Nanoparticleâ€Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment. Advanced Materials, 2021, 33, 2007209.	21.0	9
20	Cell-adaptable dynamic hydrogel reinforced with stem cells improves the functional repair of spinal cord injury by alleviating neuroinflammation. Biomaterials, 2021, 279, 121190.	11.4	53
21	Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nature Communications, 2021, 12, 7162.	12.8	70
22	Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020, 232, 119684.	11.4	96
23	Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial Activity Modulation. Journal of the American Chemical Society, 2020, 142, 18150-18159.	13.7	84
24	Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioengineering, 2020, 4, 030401.	6.2	27
25	Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Science Translational Medicine, 2020, 12, .	12.4	147
26	Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. Journal of Materials Chemistry A, 2020, 8, 12463-12471.	10.3	22
27	Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioactive Materials, 2020, 5, 819-831.	15.6	55
28	Biomimetic Presentation of Cryptic Ligands <i>via</i> Single-Chain Nanogels for Synergistic Regulation of Stem Cells. ACS Nano, 2020, 14, 4027-4035.	14.6	22
29	Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydrate Polymers, 2020, 237, 116114.	10.2	34
30	Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 33492-33499.	8.0	100
31	Long-Term Detection of Oncogenic MicroRNA in Living Human Cancer Cells by Gold@ Polydopamine–Shell Nanoprobe. ACS Biomaterials Science and Engineering, 2020, 6, 3778-3783.	5.2	13
32	Soft Polymeric Matrix as a Macroscopic Cage for Magnetically Modulating Reversible Nanoscale Ligand Presentation. Nano Letters, 2020, 20, 3207-3216.	9.1	34
33	Hierarchical Porous Poly(<scp>l</scp> -lactic acid) Nanofibrous Membrane for Ultrafine Particulate Aerosol Filtration. ACS Applied Materials & Interfaces, 2019, 11, 46261-46268.	8.0	77
34	Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. Science Advances, 2019, 5, eaaw3896.	10.3	64
35	Rapid and room temperature detection of single nucleotide variation with enhanced discrimination by crowding assisted allele specific extension. Chemical Communications, 2019, 55, 12052-12055.	4.1	1
36	Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Theranostics, 2019, 9, 4525-4541.	10.0	43

#	Article	IF	CITATIONS
37	Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nature Communications, 2019, 10, 2705.	12.8	60
38	Efficient catechol functionalization of biopolymeric hydrogels for effective multiscale bioadhesion. Materials Science and Engineering C, 2019, 103, 109835.	7.3	34
39	Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials, 2019, 210, 51-61.	11.4	179
40	Patterning Perfluorinated Surface with Graphene Oxide and the Microarray Applications. Micromachines, 2019, 10, 173.	2.9	2
41	Highly Dynamic Nanocomposite Hydrogels Selfâ€Assembled by Metal Ionâ€Ligand Coordination. Small, 2019, 15, e1900242.	10.0	45
42	Immunoregulation of macrophages by dynamic ligand presentation via ligand–cation coordination. Nature Communications, 2019, 10, 1696.	12.8	84
43	Stretchable and Bioadhesive Supramolecular Hydrogels Activated by a One-Stone–Two-Bird Postgelation Functionalization Method. ACS Applied Materials & Interfaces, 2019, 11, 16328-16335.	8.0	25
44	Magnetic Enhancement of Chondrogenic Differentiation of Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2019, 5, 2200-2207.	5.2	33
45	Anisotropic Ligand Nanogeometry Modulates the Adhesion and Polarization State of Macrophages. Nano Letters, 2019, 19, 1963-1975.	9.1	47
46	Molecular cargo delivery using multicellular magnetic microswimmers. Applied Materials Today, 2019, 15, 242-251.	4.3	52
47	Dynamic and Cell-Infiltratable Hydrogels as Injectable Carrier of Therapeutic Cells and Drugs for Treating Challenging Bone Defects. ACS Central Science, 2019, 5, 440-450.	11.3	166
48	Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensingâ€Đependent Differentiation of Stem Cells. Advanced Functional Materials, 2019, 29, 1806822.	14.9	38
49	Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF ₄ :Yb ³⁺ Tm ³⁺ @SiO ₂ Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS Applied Materials & amp; Interfaces. 2019. 11. 22074-22084.	8.0	43
50	Remote Control of Heterodimeric Magnetic Nanoswitch Regulates the Adhesion and Differentiation of Stem Cells. Journal of the American Chemical Society, 2018, 140, 5909-5913.	13.7	67
51	Bioadhesive Polymersome for Localized and Sustained Drug Delivery at Pathological Sites with Harsh Enzymatic and Fluidic Environment via Supramolecular Host–Guest Complexation. Small, 2018, 14, 1702288.	10.0	40
52	One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Materials, 2018, 10, e455-e455.	7.9	59
53	Multiscale reconstruction of a synthetic biomimetic micro-niche for enhancing and monitoring the differentiation of stem cells. Biomaterials, 2018, 173, 87-99.	11.4	14
54	Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials, 2018, 178, 681-696.	11.4	71

#	Article	IF	CITATIONS
55	Organic Semiconducting Polymer Nanoparticles for Photoacoustic Labeling and Tracking of Stem Cells in the Second Near-Infrared Window. ACS Nano, 2018, 12, 12201-12211.	14.6	127
56	An In Situ Reversible Heterodimeric Nanoswitch Controlled by Metalâ€Ion–Ligand Coordination Regulates the Mechanosensing and Differentiation of Stem Cells. Advanced Materials, 2018, 30, e1803591.	21.0	44
57	Detection of Matrix Metallopeptidase 13 for Monitoring Stem Cell Differentiation and Early Diagnosis of Osteoarthritis by Fluorescent Lightâ€Up Probes with Aggregationâ€Induced Emission Characteristics. Advanced Biology, 2018, 2, 1800010.	3.0	12
58	Remote Control of Intracellular Calcium Using Upconversion Nanotransducers Regulates Stem Cell Differentiation In Vivo. Advanced Functional Materials, 2018, 28, 1802642.	14.9	58
59	Magnetic Manipulation of Reversible Nanocaging Controls <i>In Vivo</i> Adhesion and Polarization of Macrophages. ACS Nano, 2018, 12, 5978-5994.	14.6	67
60	Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Materials, 2018, 10, 788-799.	7.9	50
61	Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Materials Science and Engineering C, 2017, 70, 969-975.	7.3	30
62	Targeted Covalent Inhibition of Grb2–Sos1 Interaction through Proximity-Induced Conjugation in Breast Cancer Cells. Molecular Pharmaceutics, 2017, 14, 1548-1557.	4.6	32
63	A Cold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Methods in Molecular Biology, 2017, 1570, 155-164.	0.9	5
64	Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomaterialia, 2017, 53, 329-342.	8.3	136
65	Nanolayered hybrid mediates synergistic co-delivery of ligand and ligation activator for inducing stem cell differentiation and tissue healing. Biomaterials, 2017, 149, 12-28.	11.4	36
66	Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomaterialia, 2017, 64, 389-400.	8.3	117
67	Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/β-catenin signaling. Biomaterials, 2017, 145, 33-43.	11.4	100
68	Optical µ-Printing of Cellular-Scale Microscaffold Arrays for 3D Cell Culture. Scientific Reports, 2017, 7, 8880.	3.3	22
69	Selfâ€Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonateâ€Magnesium (Mg ²⁺) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking. Advanced Functional Materials, 2017, 27, 1701642.	14.9	110
70	Effect of cartilaginous matrix components on the chondrogenesis and hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2292-2300.	3.4	36
71	Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Stem Cell Research and Therapy, 2017, 8, 221.	5.5	52
72	Nanocarrierâ€Mediated Codelivery of Small Molecular Drugs and siRNA to Enhance Chondrogenic Differentiation and Suppress Hypertrophy of Human Mesenchymal Stem Cells. Advanced Functional Materials, 2016, 26, 2463-2472.	14.9	42

#	Article	IF	CITATIONS
73	Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromolecular Bioscience, 2016, 16, 1019-1026.	4.1	28
74	Multifunctional Quantum Dot Nanoparticles for Effective Differentiation and Longâ€Term Tracking of Human Mesenchymal Stem Cells In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 1049-1057.	7.6	50
75	Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges. Journal of Biomechanics, 2016, 49, 1305-1310.	2.1	11
76	Preserving the adhesion of catechol-conjugated hydrogels by thiourea–quinone coupling. Biomaterials Science, 2016, 4, 1726-1730.	5.4	33
77	Near-infrared light-triggered release of small molecules for controlled differentiation and long-term tracking of stem cells inÂvivo using upconversion nanoparticles. Biomaterials, 2016, 110, 1-10.	11.4	77
78	Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials, 2016, 101, 217-228.	11.4	249
79	Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche. Biomaterials, 2016, 77, 44-52.	11.4	77
80	Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery. Advanced Functional Materials, 2015, 25, 5333-5342.	14.9	210
81	A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Journal of the American Chemical Society, 2015, 137, 7337-7346.	13.7	202
82	Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells. Nano Letters, 2015, 15, 6592-6600.	9.1	43
83	Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomaterialia, 2014, 10, 1333-1340.	8.3	29
84	Cell-Mediated Degradation Regulates Human Mesenchymal Stem Cell Chondrogenesis and Hypertrophy in MMP-Sensitive Hyaluronic Acid Hydrogels. PLoS ONE, 2014, 9, e99587.	2.5	57
85	Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10117-10122.	7.1	344
86	The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials, 2013, 34, 413-421.	11.4	265
87	Dynamic Compressive Loading Enhances Cartilage Matrix Synthesis and Distribution and Suppresses Hypertrophy in hMSC-Laden Hyaluronic Acid Hydrogels. Tissue Engineering - Part A, 2012, 18, 715-724.	3.1	121
88	Coculture of Human Mesenchymal Stem Cells and Articular Chondrocytes Reduces Hypertrophy and Enhances Functional Properties of Engineered Cartilage. Tissue Engineering - Part A, 2011, 17, 1137-1145.	3.1	235
89	Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials, 2011, 32, 6425-6434.	11.4	327