William F Fagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8346245/publications.pdf

Version: 2024-02-01

219 papers

16,506 citations

²⁶⁵⁶⁷ 56
h-index

119 g-index

229 all docs 229 docs citations

times ranked

229

19046 citing authors

#	Article	IF	CITATIONS
1	Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408, 578-580.	13.7	1,264
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
3	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
4	CONNECTIVITY, FRAGMENTATION, AND EXTINCTION RISK IN DENDRITIC METAPOPULATIONS. Ecology, 2002, 83, 3243-3249.	1.5	603
5	Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters, 2007, 10, 165-175.	3.0	566
6	A comparison-shopper's guide to connectivity metrics. Frontiers in Ecology and the Environment, 2004, 2, 529-536.	1.9	522
7	How Habitat Edges Change Species Interactions. American Naturalist, 1999, 153, 165-182.	1.0	503
8	Spatial memory and animal movement. Ecology Letters, 2013, 16, 1316-1329.	3.0	402
9	Phylogenetic and Growth Form Variation in the Scaling of Nitrogen and Phosphorus in the Seed Plants. American Naturalist, 2006, 168, E103-E122.	1.0	383
10	Nitrogen in Insects: Implications for Trophic Complexity and Species Diversification. American Naturalist, 2002, 160, 784-802.	1.0	358
11	Neutral metacommunity models predict fish diversity patterns in Mississippi–Missouri basin. Nature, 2008, 453, 220-222.	13.7	323
12	A New Urban Ecology. American Scientist, 2000, 88, 416.	0.1	319
13	Search and navigation in dynamic environments – from individual behaviors to population distributions. Oikos, 2008, 117, 654-664.	1.2	315
14	Social Learning of Migratory Performance. Science, 2013, 341, 999-1002.	6.0	270
15	A Classification of Ecological Boundaries. BioScience, 2003, 53, 723.	2.2	263
16	Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 2005, 14, 585-598.	2.7	259
17	Invasion theory and biological control. Ecology Letters, 2002, 5, 148-157.	3.0	246
18	Fungal Endophytes: Common Host Plant Symbionts but Uncommon Mutualists. Integrative and Comparative Biology, 2002, 42, 360-368.	0.9	241

#	Article	IF	Citations
19	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	2.7	235
20	Quantifying the extinction vortex. Ecology Letters, 2005, 9, 051109031307004.	3.0	229
21	Statistical Interpretation of Species Composition. Journal of the American Statistical Association, 2001, 96, 1205-1214.	1.8	226
22	MIGHT NITROGEN LIMITATION PROMOTE OMNIVORY AMONG CARNIVOROUS ARTHROPODS?. Ecology, 2003, 84, 2522-2531.	1.5	217
23	Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology, 2012, 93, 1367-1377.	1.5	200
24	From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales. American Naturalist, 2014, 183, E154-E167.	1.0	176
25	Transient windows for connectivity in a changing world. Movement Ecology, 2014, 2, 1.	1.3	155
26	How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Global Ecology and Biogeography, 2011, 20, 683-694.	2.7	152
27	A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 2017, 26, 115-127.	2.7	152
28	Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6936-6940.	3.3	149
29	RARITY, FRAGMENTATION, AND EXTINCTION RISK IN DESERT FISHES. Ecology, 2002, 83, 3250-3256.	1.5	141
30	Integrating Edge Detection and Dynamic Modeling in Quantitative Analyses of Ecological Boundaries. BioScience, 2003, 53, 730.	2.2	135
31	How Good Are Endangered Species Recovery Plans?. BioScience, 2001, 51, 643.	2.2	132
32	A comprehensive analysis of autocorrelation and bias in home range estimation. Ecological Monographs, 2019, 89, e01344.	2.4	127
33	Producer Nutritional Quality Controls Ecosystem Trophic Structure. PLoS ONE, 2009, 4, e4929.	1.1	119
34	Lost in Time, Lonely, and Single: Reproductive Asynchrony and the Allee Effect. American Naturalist, 2004, 164, 25-37.	1.0	118
35	Competition and stoichiometry: coexistence of two predators on one prey. Theoretical Population Biology, 2004, 65, 1-15.	0.5	118
36	A multiobjective optimization model for dam removal: an example trading off salmon passage with hydropower and water storage in the Willamette basin. Advances in Water Resources, 2005, 28, 845-855.	1.7	103

#	Article	IF	Citations
37	Stoichiometry of actual vs. potential predator-prey interactions: insights into nitrogen limitation for arthropod predators. Ecology Letters, 2004, 7, 876-883.	3.0	97
38	Hatch Density Variation of a Generalist Arthropod Predator: Population Consequenes and Community Impact. Ecology, 1994, 75, 2022-2032.	1.5	95
39	Trophic disruption: a metaâ€analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecology Letters, 2014, 17, 1178-1189.	3.0	94
40	When Can Herbivores Slow or Reverse the Spread of an Invading Plant? A Test Case from Mount St. Helens. American Naturalist, 2005, 166, 669-685.	1.0	93
41	Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecological Monographs, 2010, 80, 651-669.	2.4	89
42	Detritivory: stoichiometry of a neglected trophic level. Ecological Research, 2008, 23, 487-491.	0.7	85
43	Persistence and Spread of a Species with a Shifting Habitat Edge. SIAM Journal on Applied Mathematics, 2014, 74, 1397-1417.	0.8	83
44	Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nature Communications, 2016, 7, 12793.	5.8	83
45	How far to go? Determinants of migration distance in land mammals. Ecology Letters, 2015, 18, 545-552.	3.0	81
46	A COMPREHENSIVE REVIEW OF ENDANGERED SPECIES ACT RECOVERY PLANS. , 2002, 12, 630-640.		79
47	DOES INTRAGUILD PREDATION ENHANCE PREDATOR PERFORMANCE? A STOICHIOMETRIC PERSPECTIVE. Ecology, 2004, 85, 2601-2615.	1.5	72
48	Using compiled species lists to make biodiversity comparisons among regions: A test case using Oregon butterflies. Biological Conservation, 1997, 80, 249-259.	1.9	70
49	The importance of individual variation in the dynamics of animal collective movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170008.	1.8	69
50	Interbasin Water Transfer, Riverine Connectivity, and Spatial Controls on Fish Biodiversity. PLoS ONE, 2012, 7, e34170.	1.1	68
51	How climate extremesâ€"not meansâ€"define a species' geographic range boundary via a demographic tipping point. Ecological Monographs, 2014, 84, 131-149.	2.4	67
52	Perceptual Ranges, Information Gathering, and Foraging Success in Dynamic Landscapes. American Naturalist, 2017, 189, 474-489.	1.0	67
53	Habitat edges as a potential ecological trap for an insect predator. Ecological Entomology, 2003, 28, 567-572.	1.1	66
54	Signatures of Ecological Resource Availability in the Animal and Plant Proteomes. Molecular Biology and Evolution, 2006, 23, 1946-1951.	3 . 5	65

#	Article	IF	CITATIONS
55	The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology, 2011, 92, 765-776.	1.5	65
56	Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sensing, 2014, 6, 5717-5731.	1.8	65
57	RARITY, FRAGMENTATION, AND THE SCALE DEPENDENCE OF EXTINCTION RISK IN DESERT FISHES. Ecology, 2005, 86, 34-41.	1.5	64
58	Nonâ€Markovian maximum likelihood estimation of autocorrelated movement processes. Methods in Ecology and Evolution, 2014, 5, 462-472.	2.2	63
59	Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biology, 2010, 33, 493-503.	0.5	62
60	Mapping out a future for ungulate migrations. Science, 2021, 372, 566-569.	6.0	61
61	Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology, 2016, 97, 576-582.	1.5	60
62	Integrating individual search and navigation behaviors in mechanistic movement models. Theoretical Ecology, 2011, 4, 341-355.	0.4	58
63	VALIDATING POPULATION VIABILITY ANALYSIS FOR CORRUPTED DATA SETS. Ecology, 2002, 83, 2379-2386.	1.5	57
64	Competitive reversals inside ecological reserves: the role of external habitat degradation. Journal of Mathematical Biology, 1998, 37, 491-533.	0.8	56
65	Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. Journal of Animal Ecology, 2008, 77, 746-756.	1.3	56
66	Correlated velocity models as a fundamental unit of animal movement: synthesis and applications. Movement Ecology, 2017, 5, 13.	1.3	56
67	Conserving the World's Finest Grassland Amidst Ambitious National Development. Conservation Biology, 2014, 28, 1736-1739.	2.4	54
68	A framework for modelling range shifts and migrations: asking when, whither, whether and will it return. Journal of Animal Ecology, 2017, 86, 943-959.	1.3	53
69	Effects of body size on estimation of mammalian area requirements. Conservation Biology, 2020, 34, 1017-1028.	2.4	51
70	Global biogeography of autotroph chemistry: is insolation a driving force?. Oikos, 2013, 122, 1121-1130.	1.2	50
71	Immune loss as a driver of coexistence during host-phage coevolution. ISME Journal, 2018, 12, 585-597.	4.4	50
72	Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations. Ecosphere, 2019, 10, e02971.	1.0	50

#	Article	IF	CITATIONS
73	VARIABILITY AND DYNAMICS OF A DESERT STREAM COMMUNITY., 2003, 13, 1566-1579.		45
74	Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus. Molecular Ecology, 2011, 20, 92-104.	2.0	45
75	Will Observation Error and Biases Ruin the Use of Simple Extinction Models?. Conservation Biology, 2000, 14, 148-154.	2.4	44
76	Resource use efficiency and community effects of invasive Hypochaeris radicata (Asteraceae) during primary succession. American Journal of Botany, 2010, 97, 1772-1779.	0.8	43
77	Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genetics, 2019, 15, e1008493.	1.5	43
78	A mega-herd of more than 200,000 Mongolian gazelles Procapra gutturosa: a consequence of habitat quality. Oryx, 2009, 43, 149.	0.5	40
79	How restructuring river connectivity changes freshwater fish biodiversity and biogeography. Water Resources Research, 2011, 47, .	1.7	40
80	How Resource Phenology Affects Consumer Population Dynamics. American Naturalist, 2016, 187, 151-166.	1.0	39
81	Large birds travel farther in homogeneous environments. Global Ecology and Biogeography, 2019, 28, 576-587.	2.7	39
82	Challenges in the conservation of wideâ€ranging nomadic species. Journal of Applied Ecology, 2019, 56, 1916-1926.	1.9	39
83	Autocorrelationâ€informed home range estimation: A review and practical guide. Methods in Ecology and Evolution, 2022, 13, 534-544.	2.2	39
84	Average Dispersal Success: Linking Home Range, Dispersal, And Metapopulation Dynamics To Reserve Design., 2006, 16, 820-828.		38
85	Size-Dependent Cannibalism in Praying Mantids: Using Biomass Flux to Model Size-Structured Populations. American Naturalist, 1996, 147, 230-268.	1.0	37
86	Interactions between Biological Control Efforts and Insecticide Applications in Tropical Rice Agroecosystems: The Potential Role of Intraguild Predation. Biological Control, 1998, 13, 121-126.	1.4	37
87	How Predator Incursions Affect Critical Patch Size: The Role of the Functional Response. American Naturalist, 2001, 158, 368-375.	1.0	37
88	NONRANDOM LARVAL DISPERSAL CAN STEEPEN MARINE CLINES. Evolution; International Journal of Organic Evolution, 2005, 59, 2509-2517.	1.1	37
89	Dynamics of fish dispersal during river-floodplain connectivity and its implications for community assembly. Aquatic Sciences, 2016, 78, 355-365.	0.6	37
90	How range residency and long-range perception change encounter rates. Journal of Theoretical Biology, 2020, 498, 110267.	0.8	37

#	Article	IF	CITATIONS
91	Effects of air temperature on habitat selection and activity patterns of two tropical imperfect homeotherms. Animal Behaviour, 2018, 140, 129-140.	0.8	36
92	Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Bulletin of Mathematical Biology, 2016, 78, 1337-1379.	0.9	35
93	Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170007.	1.8	35
94	Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME Journal, 2019, 13, 2589-2602.	4.4	34
95	Biodiversity, Habitat Area, Resource Growth Rate and Interference Competition. Bulletin of Mathematical Biology, 2003, 65, 497-518.	0.9	33
96	Effects of branching spatial structure and life history on the asymptotic growth rate of a population. Theoretical Ecology, 2010, 3, 137-152.	0.4	33
97	Effects of body size, trophic mode and larval habitat on Diptera stoichiometry: a regional comparison. Oikos, 2009, 118, 615-623.	1,2	32
98	How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns. Ecological Complexity, 2012, 12, 1-12.	1.4	31
99	A CRITICAL ROLE FOR CRITICAL HABITAT IN THE RECOVERY PLANNING PROCESS? NOT YET., 2002, 12, 701-707.		29
100	Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerging Infectious Diseases, 2016, 22, 1921-1929.	2.0	29
101	Statistical analysis of co-occurrence patterns in microbial presence-absence datasets. PLoS ONE, 2017, 12, e0187132.	1.1	29
102	Detecting interaction networks in the human microbiome with conditional Granger causality. PLoS Computational Biology, 2019, 15, e1007037.	1.5	28
103	Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. Journal of Ecology, 2019, 107, 887-900.	1.9	28
104	Learning and Animal Movement. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	28
105	Population and Community Consequences of Spatial Subsidies Derived from Centralâ€Place Foraging. American Naturalist, 2007, 170, 902-915.	1.0	27
106	Conspecific and heterospecific attraction in assessments of functional connectivity. Biodiversity and Conservation, 2011, 20, 2779-2796.	1.2	27
107	Leadership, social learning, and the maintenance (or collapse) of migratory populations. Theoretical Ecology, 2012, 5, 253-264.	0.4	27
108	Reproductive Asynchrony in Spatial Population Models: How Mating Behavior Can Modulate Allee Effects Arising from Isolation in Both Space and Time. American Naturalist, 2010, 175, 362-373.	1.0	26

#	Article	lF	Citations
109	A Stoichiometric Model of Early Plant Primary Succession. American Naturalist, 2011, 177, 233-245.	1.0	26
110	What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape?. American Journal of Botany, 2015, 102, 1309-1322.	0.8	26
111	In stark contrast to widespread declines along the Scotia Arc, a survey of the South Sandwich Islands finds a robust seabird community. Polar Biology, 2016, 39, 1615-1625.	0.5	26
112	Title is missing!. Landscape Ecology, 2001, 16, 33-39.	1.9	25
113	Habitat edges and predator–prey interactions: effects on critical patch size. Mathematical Biosciences, 2002, 175, 31-55.	0.9	25
114	How protandry and protogyny affect female mating failure: a spatial population model. Entomologia Experimentalis Et Applicata, 2013, 146, 130-140.	0.7	25
115	Trait-based analysis of the human skin microbiome. Microbiome, 2019, 7, 101.	4.9	25
116	Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshwater Biology, 2020, 65, 426-434.	1.2	25
117	Spatially structured herbivory and primary succession at Mount St Helens: field surveys and experimental growth studies suggest a role for nutrients. Ecological Entomology, 2004, 29, 398-409.	1.1	24
118	Quantifying Rarity, Losses, and Risks for Native Fishes of the Lower Colorado River Basin: Implications for Conservation Listing. Conservation Biology, 2005, 19, 1872-1882.	2.4	24
119	Infusing quantitative approaches throughout the biological sciences curriculum. International Journal of Mathematical Education in Science and Technology, 2013, 44, 817-833.	0.8	24
120	Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history. Animal Behaviour, 2020, 166, 219-231.	0.8	24
121	Identifying Important Forest Patches for the Long-Term Persistence of the Endangered Golden-Headed Lion Tamarin (<i>Leontopithecus Chrysomelas</i>). Tropical Conservation Science, 2010, 3, 63-77.	0.6	23
122	Pitfalls and challenges of estimating population growth rate from empirical data: consequences for allometric scaling relations. Oikos, 2010, 119, 455-464.	1.2	23
123	Phenologically explicit models for studying plant–pollinator interactions under climate change. Theoretical Ecology, 2014, 7, 289-297.	0.4	23
124	The Correlated Random Walk and the Rise of Movement Ecology. Bulletin of the Ecological Society of America, 2014, 95, 204-206.	0.2	23
125	Using citizen science to estimate lichen diversity. Biological Conservation, 2014, 171, 1-8.	1.9	22
126	How topography induces reproductive asynchrony and alters gypsy moth invasion dynamics. Journal of Animal Ecology, 2015, 84, 188-198.	1.3	22

#	Article	IF	CITATIONS
127	Matching expert range maps with species distribution model predictions. Conservation Biology, 2020, 34, 1292-1304.	2.4	22
128	Body size, dispersal ability and compositional disharmony: the carnivore-dominated fauna of the Kuril Islands. Diversity and Distributions, 1998, 4, 135-149.	1.9	21
129	HOW TRANSIENT PATCHES AFFECT POPULATION DYNAMICS: THE CASE OF HYPOXIA AND BLUE CRABS. Ecological Monographs, 2006, 76, 415-438.	2.4	21
130	Survivorship curves and their impact on the estimation of maximum population growth rates. Ecology, 2009, 90, 1116-1124.	1.5	21
131	Adaptation to a limiting environment: the phosphorus content of terrestrial cave arthropods. Ecological Research, 2010, 25, 565-577.	0.7	21
132	$K\tilde{A}_i$ lm \tilde{A}_i n filters for continuous-time movement models. Ecological Informatics, 2017, 40, 8-21.	2.3	21
133	Estimating encounter location distributions from animal tracking data. Methods in Ecology and Evolution, 2021, 12, 1158-1173.	2.2	21
134	Community effects of praying mantids: a meta-analysis of the influences of species identity and experimental design. Ecological Entomology, 2002, 27, 385-395.	1.1	20
135	Influence of crop edges on movement of generalist predators: a diffusion approach. Agricultural and Forest Entomology, 2002, 4, 21-30.	0.7	20
136	Multiâ€scale patterns of moss and lichen richness on the Antarctic Peninsula. Ecography, 2013, 36, 209-219.	2.1	20
137	Modeling and analysis of stoichiometric two-patch consumer–resource systems. Mathematical Biosciences, 2004, 189, 153-184.	0.9	19
138	Interspecific Variation in Critical Patch Size and Gapâ€Crossing Ability as Determinants of Geographic Range Size Distributions. American Naturalist, 2009, 173, 363-375.	1.0	18
139	Critical patch sizes for foodâ€web modules. Ecology, 2012, 93, 1779-1786.	1.5	18
140	RECOVERY PLAN REVISIONS: PROGRESS OR DUE PROCESS?. , 2002, 12, 682-689.		17
141	Hierarchical analysis of taxonomic variation in intraspecific competition across fish species. Ecology, 2016, 97, 1724-1734.	1.5	17
142	Selective Maintenance of Multiple CRISPR Arrays Across Prokaryotes. CRISPR Journal, 2018, 1, 405-413.	1.4	17
143	Improved foraging by switching between diffusion and advection: benefits from movement that depends on spatial context. Theoretical Ecology, 2020, 13, 127-136.	0.4	17
144	A better index for analysis of co-occurrence and similarity. Science Advances, 2022, 8, eabj9204.	4.7	17

#	Article	IF	Citations
145	Multivariate Moran Process with Lotka-Volterra Phenomenology. Physical Review Letters, 2011, 107, 228101.	2.9	16
146	Phylogenetic prediction of the maximum <i>per capita</i> rate of population growth. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130523.	1.2	16
147	Disentangling herbivore impacts in primary succession by refocusing the plant stress and vigor hypotheses on phenology. Ecological Monographs, 2019, 89, e01389.	2.4	16
148	Migrating whales depend on memory to exploit reliable resources. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5217-5219.	3.3	16
149	Broad-Scale Latitudinal Variation in Female Reproductive Success Contributes to the Maintenance of a Geographic Range Boundary in Bagworms (Lepidoptera: Psychidae). PLoS ONE, 2010, 5, e14166.	1.1	16
150	EFFECT OF RIVER FLOW MANIPULATION ON WOLF SPIDER ASSEMBLAGES AT THREE DESERT RIPARIAN SITES. Journal of Arachnology, 2000, 28, 115-122.	0.3	15
151	Convergence of Differentially Invaded Systems toward Invader-dominance: Time-lagged Invasions as a Predictor in Desert Fish Communities. Biological Invasions, 2004, 6, 233-243.	1.2	15
152	A sampling theory for asymmetric communities. Journal of Theoretical Biology, 2011, 273, 1-14.	0.8	15
153	Survival probabilities of adult Mongolian gazelles. Journal of Wildlife Management, 2014, 78, 35-41.	0.7	15
154	Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology, 2022, 48, 239-260.	1.3	15
155	Genomic variation in cline shape across a hybrid zone. Ecology and Evolution, 2012, 2, 2737-2748.	0.8	14
156	The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US., 2022, 1, e0000010.		14
157	Higher-order effects, continuous species interactions, and trait evolution shape microbial spatial dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
158	Genetic differentiation and habitat connectivity across towhee hybrid zones in Mexico. Evolutionary Ecology, 2014, 28, 277-297.	0.5	12
159	INTRODUCING A "BOUNDARY-FLUX―APPROACH TO QUANTIFYING INSECT DIFFUSION RATES. Ecology, 1997 78, 579-587.	' '1.5	11
160	A niche remedy for the dynamical problems of neutral theory. Theoretical Ecology, 2015, 8, 149-161.	0.4	10
161	A discrete-time model for population persistence in habitats with time-varying sizes. Journal of Mathematical Biology, 2017, 75, 649-704.	0.8	10
162	Inclement weather forces stopovers and prevents migratory progress for obligate soaring migrants. Movement Ecology, 2021, 9, 39.	1.3	10

#	Article	IF	Citations
163	Success, failure, and spreading speeds for invasions on spatial gradients. Journal of Mathematical Biology, 2015, 70, 265-287.	0.8	9
164	Inter-dependent movements of Asiatic Cheetahs <i>Acinonyx jubatus venaticus </i> and a Persian Leopard <i>Panthera pardus saxicolor </i> in a desert environment in Iran (Mammalia: Felidae). Zoology in the Middle East, 2019, 65, 283-292.	0.2	9
165	Opposing population trajectories in two Bustard species: A long-term study in a protected area in Central Spain. Bird Conservation International, 2019, 29, 308-320.	0.7	9
166	Animal soundscapes reveal key markers of Amazon forest degradation from fire and logging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2102878119.	3.3	9
167	Social transmission of migratory knowledge: quantifying the risk of losing migratory behavior. Theoretical Ecology, $2018,11,257-270.$	0.4	8
168	Dynamic modelling of personal protection control strategies for vector-borne disease limits the role of diversity amplification. Journal of the Royal Society Interface, 2018, 15, 20180166.	1.5	8
169	Exploring the functional composition of the human microbiome using a hand-curated microbial trait database. BMC Bioinformatics, 2021, 22, 306.	1.2	8
170	Populationâ€level inference for homeâ€range areas. Methods in Ecology and Evolution, 2022, 13, 1027-1041.	2.2	8
171	The role of omnivory in mediating metacommunity robustness to habitat destruction. Ecology, 2020, 101, e03026.	1.5	7
172	Memory-driven movement model for periodic migrations. Journal of Theoretical Biology, 2021, 508, 110486.	0.8	7
173	Persistence and Spread of Solutions in a Two-Species LotkaVolterra Competition-Diffusion Model with a Shifting Habitat. SIAM Journal on Applied Mathematics, 2021, 81, 1600-1622.	0.8	7
174	Are trellis vineyards avoided? Examining how vineyard types affect the distribution of great bustards. Agriculture, Ecosystems and Environment, 2020, 289, 106734.	2.5	6
175	Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization. PLoS ONE, 2016, 11, e0163002.	1.1	6
176	Introducing AMV (Animal Movement Visualizer), a visualization tool for animal movement data from satellite collars and radiotelemetry. Ecological Informatics, 2013, 15, 91-95.	2.3	5
177	A Stoichioproteomic Analysis of Samples from the Human Microbiome Project. Frontiers in Microbiology, 2017, 8, 1119.	1.5	5
178	Deciding when to intrude on a neighbour: quantifying behavioural mechanisms for temporary territory expansion. Theoretical Ecology, 2019, 12, 307-318.	0.4	5
179	Group size and decision making: experimental evidence for minority games in fish behaviour. Animal Behaviour, 2019, 155, 9-19.	0.8	5
180	For everything there is a season: Analysing periodic mortality patterns with the cyclomort <scp>r</scp> package. Methods in Ecology and Evolution, 2020, 11, 129-138.	2.2	5

#	Article	IF	Citations
181	Predictor species: Improving assessments of rare species occurrence by modeling environmental coâ€responses. Ecology and Evolution, 2020, 10, 3293-3304.	0.8	5
182	Resource selection of a nomadic ungulate in a dynamic landscape. PLoS ONE, 2021, 16, e0246809.	1.1	5
183	Deciphering trophic interactions in a mid-Cambrian assemblage. IScience, 2021, 24, 102271.	1.9	5
184	Movement and activity of reintroduced giant pandas. Ursus, 2019, 29, 163.	0.3	5
185	How local extinction changes rarity: an example with Sonoran Desert fishes. Ecography, 2006, 29, 845-852.	2.1	4
186	Sampling, sequencing and the SAD. Ecological Complexity, 2017, 32, 168-180.	1.4	4
187	Statistical analysis of Asiatic cheetah movement and its spatio-temporal drivers. Journal of Arid Environments, 2018, 151, 141-145.	1.2	4
188	Exploring noise, degeneracy and determinism in biological networks with the einet package. Methods in Ecology and Evolution, 2022, 13, 799-804.	2.2	4
189	Spatial Memory Drives Foraging Strategies of Wolves, but in Highly Individual Ways. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
190	Can vertebrate predation alter aggregation of risk in an insect host-parasitoid system?. Journal of Animal Ecology, 2002, 71, 487-496.	1.3	3
191	Understanding lichen diversity on the Antarctic Peninsula using parataxonomic units as a surrogate for species richness. Ecology, 2013, 94, 2110-2110.	1.5	3
192	Overwintering survival of bagworms, Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae): influence of temperature and egg cluster weight. Canadian Entomologist, 2013, 145, 77-81.	0.4	3
193	Invasion speeds in microbial systems with toxin production and quorum sensing. Journal of Theoretical Biology, 2017, 420, 290-303.	0.8	3
194	Foraging and interâ€individual distances of bearded capuchin monkeys. American Journal of Primatology, 2018, 80, e22900.	0.8	3
195	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. PLoS Computational Biology, 2020, 16, e1008136.	1.5	3
196	Exploring the Evolution of Perception: An Agent-Based Approach. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
197	A semiâ€variance approach to visualising phylogenetic autocorrelation. Methods in Ecology and Evolution, 2022, 13, 396-406.	2.2	3
198	Implicit versus explicit vector management strategies in models for vector-borne disease epidemiology. Journal of Mathematical Biology, 2022, 84, 48.	0.8	3

#	Article	IF	CITATIONS
199	Memories of Migrations Past: Sociality and Cognition in Dynamic, Seasonal Environments. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
200	How Phenological Variation Affects Species Spreading Speeds. Bulletin of Mathematical Biology, 2018, 80, 1476-1513.	0.9	1
201	Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales. Journal of Avian Biology, 2020, 51 , .	0.6	1
202	Spatial Ecology: Herbivores and Green Waves— To Surf or Hang Loose?. Current Biology, 2020, 30, R991-R993.	1.8	1
203	CONNECTIVITY, FRAGMENTATION, AND EXTINCTION RISK IN DENDRITIC METAPOPULATIONS. , 2002, 83, 3243.		1
204	LANDSCAPE MATRIX AND SPECIES TRAITS MEDIATE RESPONSES OF NEOTROPICAL RESIDENT BIRDS TO FOREST FRAGMENTATION IN JAMAICA. Ecological Monographs, 2010, 80, 100318220649095.	2.4	1
205	Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences and Engineering, 2005, 2, 833-868.	1.0	1
206	Transfer of nitrogen by migratory birds in the African-Western Eurasian Flyways. Animal Migration, 2020, 7, 52-57.	1.1	1
207	Quantifying Interdependencies in Geyser Eruptions at the Upper Geyser Basin, Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	1
208	How Oviposition Behavior Determines Persistence in Small Patches and Changing Climates. American Naturalist, 2015, 186, 237-251.	1.0	0
209	Invasion dynamics of competing species with stage-structure. Journal of Theoretical Biology, 2017, 435, 12-21.	0.8	O
210	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16 , $e1008136$.		0
211	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		0
212	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control., 2020, 16, e1008136.		0
213	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control. , 2020, 16, e1008136.		O
214	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control., 2020, 16, e1008136.		0
215	Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control., 2020, 16, e1008136.		O
216	Linking high GC content to the repair of double strand breaks in prokaryotic genomes. , 2019, 15, e1008493.		0

#	Article	IF	CITATIONS
217	Linking high GC content to the repair of double strand breaks in prokaryotic genomes. , 2019, 15, e1008493.		O
218	Linking high GC content to the repair of double strand breaks in prokaryotic genomes. , 2019, 15, e1008493.		0
219	Linking high GC content to the repair of double strand breaks in prokaryotic genomes. , 2019, 15, e1008493.		O