Ling Juan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345756/publications.pdf

Version: 2024-02-01

56	3,902	30	56
papers	citations	h-index	g-index
61	61	61	2656
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms, 2022, 10, 587.	3.6	2
2	A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioactive Materials, 2021, 6, 375-385.	15.6	24
3	Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Frontiers in Molecular Biosciences, 2021, 8, 648468.	3.5	15
4	A Conserved Class II Type Thioester Domain-Containing Adhesin Is Required for Efficient Conjugation in Bacillus subtilis. MBio, 2021, 12, .	4.1	3
5	A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Research, 2021, 49, 5553-5567.	14.5	5
6	CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Molecular Cell, 2021, 81, 3623-3636.e6.	9.7	22
7	pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genomics and Bioinformatics, 2021, 3, Iqab096.	3.2	4
8	Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. Microorganisms, 2021, 9, 2465.	3.6	1
9	A Small Molecule Inhibitor of CTP Synthetase Identified by Differential Activity on a Bacillus subtilis Mutant Deficient in Class A Penicillin-Binding Proteins. Frontiers in Microbiology, 2020, 11, 2001.	3 . 5	2
10	Reversible regulation of conjugation of Bacillus subtilis plasmid pLS20 by the quorum sensing peptide responsive anti-repressor RappLS20. Nucleic Acids Research, 2020, 48, 10785-10801.	14.5	4
11	Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. Journal of Bacteriology, 2020, 202, .	2.2	4
12	Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE mice. Atherosclerosis, 2020, 310, 64-74.	0.8	11
13	Geometric principles underlying the proliferation of a model cell system. Nature Communications, 2020, 11, 4149.	12.8	21
14	Surface Exclusion Revisited: Function Related to Differential Expression of the Surface Exclusion System of Bacillus subtilis Plasmid pLS20. Frontiers in Microbiology, 2019, 10, 1502.	3.5	11
15	Microfluidic timeâ€lapse analysis and reevaluation of theBacillus subtiliscell cycle. MicrobiologyOpen, 2019, 8, e876.	3.0	8
16	Novel regulatory mechanism of establishment genes of conjugative plasmids. Nucleic Acids Research, 2018, 46, 11910-11926.	14.5	8
17	RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nature Microbiology, 2017, 2, 16253.	13.3	159
18	Cell Cycle Machinery in Bacillus subtilis. Sub-Cellular Biochemistry, 2017, 84, 67-101.	2.4	69

#	Article	IF	CITATIONS
19	Development of SimCells as a novel chassis for functional biosensors. Scientific Reports, 2017, 7, 7261.	3.3	24
20	The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Frontiers in Microbiology, 2017, 8, 2138.	3.5	10
21	Discovery of a new family of relaxases in Firmicutes bacteria. PLoS Genetics, 2017, 13, e1006586.	3.5	49
22	A benzamideâ€dependent <i>fts</i> <scp><i>Z</i></scp> mutant reveals residues crucial for <scp>Z</scp> â€ring assembly. Molecular Microbiology, 2016, 99, 1028-1042.	2.5	17
23	L-form bacteria, chronic diseases and the origins of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150494.	4.0	88
24	Microfluidics for bacterial imaging. Methods in Microbiology, 2016, 43, 69-111.	0.8	16
25	Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of <i>Bacillus subtilis</i> . Molecular Microbiology, 2016, 101, 333-350.	2.5	38
26	Nucleoid occlusion protein $\langle scp \rangle N \langle scp \rangle$ oc recruits $\langle scp \rangle DNA \langle scp \rangle$ to the bacterial cell membrane. EMBO Journal, 2015, 34, 491-501.	7.8	92
27	Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage. Current Biology, 2015, 25, 1613-1618.	3.9	89
28	A Complex Genetic Switch Involving Overlapping Divergent Promoters and DNA Looping Regulates Expression of Conjugation Genes of a Gram-positive Plasmid. PLoS Genetics, 2014, 10, e1004733.	3.5	30
29	Cell cycle regulation by the bacterial nucleoid. Current Opinion in Microbiology, 2014, 22, 94-101.	5.1	71
30	Mobility of the Native Bacillus subtilis Conjugative Plasmid pLS20 Is Regulated by Intercellular Signaling. PLoS Genetics, 2013, 9, e1003892.	3.5	71
31	Nucleoid occlusion and bacterial cell division. Nature Reviews Microbiology, 2012, 10, 8-12.	28.6	173
32	Inhibition of <i>Bacillus subtilis</i> natural competence by a native, conjugative plasmidâ€encoded <i>comK</i> repressor protein. Environmental Microbiology, 2012, 14, 2812-2825.	3.8	34
33	Multiple effects of benzamide antibiotics on FtsZ function. Molecular Microbiology, 2011, 80, 68-84.	2.5	86
34	Cellular localization of cholineâ€utilization proteins in <i>Streptococcus pneumoniae</i> using novel fluorescent reporter systems. Molecular Microbiology, 2009, 74, 395-408.	2.5	73
35	It takes two DNA translocases to untangle chromosomes from the division septum. Molecular Microbiology, 2009, 74, 773-776.	2.5	6
36	Localisation of DivIVA by targeting to negatively curved membranes. EMBO Journal, 2009, 28, 2272-2282.	7.8	292

#	Article	IF	CITATIONS
37	Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO Journal, 2009, 28, 1940-1952.	7.8	139
38	DNA versus membrane. Nature, 2008, 451, 900-901.	27.8	2
39	Systematic localisation of proteins fused to the green fluorescent protein inBacillus subtilis: Identification of new proteins at the DNA replication factory. Proteomics, 2006, 6, 2135-2146.	2.2	84
40	Diversity and redundancy in bacterial chromosome segregation mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 497-505.	4.0	34
41	Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis. Cell, 2004, 117, 915-925.	28.9	361
42	Structure and segregation of the bacterial nucleoid. Current Opinion in Genetics and Development, 2004, 14, 126-132.	3.3	32
43	RacA and the Sojâ€5po0J system combine to effect polar chromosome segregation in sporulating <i>Bacillus subtilis</i> . Molecular Microbiology, 2003, 49, 1463-1475.	2.5	184
44	An expanded view of bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8342-8347.	7.1	176
45	A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO Journal, 2002, 21, 4001-4011.	7.8	52
46	DNA transport in bacteria. Nature Reviews Molecular Cell Biology, 2001, 2, 538-545.	37.0	116
47	Role of <i>Bacillus subtilis</i> SpollIE in DNA Transport Across the Mother Cell-Prespore Division Septum. Science, 2000, 290, 995-997.	12.6	175
48	Identification and Characterization of a New Prespore-Specific Regulatory Gene, rsfA, of Bacillus subtilis. Journal of Bacteriology, 2000, 182, 418-424.	2.2	22
49	Use of asymmetric cell division andspollIEmutants to probe chromosome orientation and organization inBacillus subtilis. Molecular Microbiology, 1998, 27, 777-786.	2.5	120
50	Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpollE phosphatase to the prespore side of the asymmetricÂseptum. Genes and Development, 1998, 12, 1371-1380.	5.9	69
51	Establishment of Prespore-Specific Gene Expression in Bacillus subtilis: Localization of SpollE Phosphatase and Initiation of Compartment-Specific Proteolysis. Journal of Bacteriology, 1998, 180, 3276-3284.	2.2	16
52	Regulation of Prespore-Specific Transcription during Sporulation in Bacillus subtilis., 1998,, 175-183.		0
53	Septal localization of the SpollIE chromosome partitioning protein in Bacillus subtilis. EMBO Journal, 1997, 16, 2161-2169.	7.8	147
54	Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. Journal of Bacteriology, 1995, 177, 5711-5715.	2.2	42

#	Article	lF	CITATIONS
55	A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis Genes and Development, 1995, 9, 1316-1326.	5.9	169
56	<i>Bacillus subtilis</i> spollIE Protein Required for DNA Segregation During Asymmetric Cell Division. Science, 1994, 264, 572-575.	12.6	316