
Ling Juan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination of Cell Division and Chromosome Segregation by a Nucleoid Occlusion Protein in Bacillus subtilis. Cell, 2004, 117, 915-925.	28.9	361
2	<i>Bacillus subtilis</i> spoIIIE Protein Required for DNA Segregation During Asymmetric Cell Division. Science, 1994, 264, 572-575.	12.6	316
3	Localisation of DivIVA by targeting to negatively curved membranes. EMBO Journal, 2009, 28, 2272-2282.	7.8	292
4	RacA and the Soj‧po0J system combine to effect polar chromosome segregation in sporulating <i>Bacillus subtilis</i> . Molecular Microbiology, 2003, 49, 1463-1475.	2.5	184
5	An expanded view of bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8342-8347.	7.1	176
6	Role of <i>Bacillus subtilis</i> SpoIIIE in DNA Transport Across the Mother Cell-Prespore Division Septum. Science, 2000, 290, 995-997.	12.6	175
7	Nucleoid occlusion and bacterial cell division. Nature Reviews Microbiology, 2012, 10, 8-12.	28.6	173
8	A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis Genes and Development, 1995, 9, 1316-1326.	5.9	169
9	RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nature Microbiology, 2017, 2, 16253.	13.3	159
10	Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO Journal, 1997, 16, 2161-2169.	7.8	147
11	Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO Journal, 2009, 28, 1940-1952.	7.8	139
12	Use of asymmetric cell division andspolllEmutants to probe chromosome orientation and organization inBacillus subtilis. Molecular Microbiology, 1998, 27, 777-786.	2.5	120
13	DNA transport in bacteria. Nature Reviews Molecular Cell Biology, 2001, 2, 538-545.	37.0	116
14	Nucleoid occlusion protein <scp>N</scp> oc recruits <scp>DNA</scp> to the bacterial cell membrane. EMBO Journal, 2015, 34, 491-501.	7.8	92
15	Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage. Current Biology, 2015, 25, 1613-1618.	3.9	89
16	L-form bacteria, chronic diseases and the origins of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150494.	4.0	88
17	Multiple effects of benzamide antibiotics on FtsZ function. Molecular Microbiology, 2011, 80, 68-84.	2.5	86
18	Systematic localisation of proteins fused to the green fluorescent protein inBacillus subtilis: Identification of new proteins at the DNA replication factory. Proteomics, 2006, 6, 2135-2146.	2.2	84

Ling Juan Wu

#	Article	IF	CITATIONS
19	Cellular localization of cholineâ€utilization proteins in <i>Streptococcus pneumoniae</i> using novel fluorescent reporter systems. Molecular Microbiology, 2009, 74, 395-408.	2.5	73
20	Mobility of the Native Bacillus subtilis Conjugative Plasmid pLS20 Is Regulated by Intercellular Signaling. PLoS Genetics, 2013, 9, e1003892.	3.5	71
21	Cell cycle regulation by the bacterial nucleoid. Current Opinion in Microbiology, 2014, 22, 94-101.	5.1	71
22	Cell Cycle Machinery in Bacillus subtilis. Sub-Cellular Biochemistry, 2017, 84, 67-101.	2.4	69
23	Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpollE phosphatase to the prespore side of the asymmetricÂseptum. Genes and Development, 1998, 12, 1371-1380.	5.9	69
24	A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis. EMBO Journal, 2002, 21, 4001-4011.	7.8	52
25	Discovery of a new family of relaxases in Firmicutes bacteria. PLoS Genetics, 2017, 13, e1006586.	3.5	49
26	Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. Journal of Bacteriology, 1995, 177, 5711-5715.	2.2	42
27	Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of <i>Bacillus subtilis</i> . Molecular Microbiology, 2016, 101, 333-350.	2.5	38
28	Diversity and redundancy in bacterial chromosome segregation mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 497-505.	4.0	34
29	Inhibition of <i>Bacillus subtilis</i> natural competence by a native, conjugative plasmidâ€encoded <i>comK</i> repressor protein. Environmental Microbiology, 2012, 14, 2812-2825.	3.8	34
30	Structure and segregation of the bacterial nucleoid. Current Opinion in Genetics and Development, 2004, 14, 126-132.	3.3	32
31	A Complex Genetic Switch Involving Overlapping Divergent Promoters and DNA Looping Regulates Expression of Conjugation Genes of a Gram-positive Plasmid. PLoS Genetics, 2014, 10, e1004733.	3.5	30
32	Development of SimCells as a novel chassis for functional biosensors. Scientific Reports, 2017, 7, 7261.	3.3	24
33	A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioactive Materials, 2021, 6, 375-385.	15.6	24
34	CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Molecular Cell, 2021, 81, 3623-3636.e6.	9.7	22
35	Identification and Characterization of a New Prespore-Specific Regulatory Gene, rsfA , of Bacillus subtilis. Journal of Bacteriology, 2000, 182, 418-424.	2.2	22
36	Geometric principles underlying the proliferation of a model cell system. Nature Communications, 2020, 11, 4149.	12.8	21

Ling Juan Wu

#	Article	IF	CITATIONS
37	A benzamideâ€dependent <i>fts</i> <scp><i>Z</i></scp> mutant reveals residues crucial for <scp>Z</scp> â€ring assembly. Molecular Microbiology, 2016, 99, 1028-1042.	2.5	17
38	Microfluidics for bacterial imaging. Methods in Microbiology, 2016, 43, 69-111.	0.8	16
39	Establishment of Prespore-Specific Gene Expression in Bacillus subtilis : Localization of SpoIIE Phosphatase and Initiation of Compartment-Specific Proteolysis. Journal of Bacteriology, 1998, 180, 3276-3284.	2.2	16
40	Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Frontiers in Molecular Biosciences, 2021, 8, 648468.	3.5	15
41	Surface Exclusion Revisited: Function Related to Differential Expression of the Surface Exclusion System of Bacillus subtilis Plasmid pLS20. Frontiers in Microbiology, 2019, 10, 1502.	3.5	11
42	Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE mice. Atherosclerosis, 2020, 310, 64-74.	0.8	11
43	The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation. Frontiers in Microbiology, 2017, 8, 2138.	3.5	10
44	Novel regulatory mechanism of establishment genes of conjugative plasmids. Nucleic Acids Research, 2018, 46, 11910-11926.	14.5	8
45	Microfluidic timeâ€lapse analysis and reevaluation of theBacillus subtiliscell cycle. MicrobiologyOpen, 2019, 8, e876.	3.0	8
46	It takes two DNA translocases to untangle chromosomes from the division septum. Molecular Microbiology, 2009, 74, 773-776.	2.5	6
47	A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Research, 2021, 49, 5553-5567.	14.5	5
48	Reversible regulation of conjugation of Bacillus subtilis plasmid pLS20 by the quorum sensing peptide responsive anti-repressor RappLS20. Nucleic Acids Research, 2020, 48, 10785-10801.	14.5	4
49	Cohesion of Sister Chromosome Termini during the Early Stages of Sporulation in Bacillus subtilis. Journal of Bacteriology, 2020, 202, .	2.2	4
50	pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genomics and Bioinformatics, 2021, 3, Iqab096.	3.2	4
51	A Conserved Class II Type Thioester Domain-Containing Adhesin Is Required for Efficient Conjugation in Bacillus subtilis. MBio, 2021, 12, .	4.1	3
52	DNA versus membrane. Nature, 2008, 451, 900-901.	27.8	2
53	A Small Molecule Inhibitor of CTP Synthetase Identified by Differential Activity on a Bacillus subtilis Mutant Deficient in Class A Penicillin-Binding Proteins. Frontiers in Microbiology, 2020, 11, 2001.	3.5	2
54	Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms, 2022, 10, 587.	3.6	2

#	Article	IF	CITATIONS
55	Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. Microorganisms, 2021, 9, 2465.	3.6	1
56	Regulation of Prespore-Specific Transcription during Sporulation in Bacillus subtilis. , 1998, , 175-183.		0