Christopher Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345194/publications.pdf

Version: 2024-02-01

50276 62596 7,269 140 46 80 citations h-index g-index papers 141 141 141 7156 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymer Crystallization-Driven, Periodic Patterning on Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 1692-1699.	13.7	366
2	Nanohybrid Shish-Kebabs: Periodically Functionalized Carbon Nanotubes. Advanced Materials, 2005, 17, 1198-1202.	21.0	331
3	Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries. Advanced Materials, 2015, 27, 5995-6001.	21.0	297
4	Amphiphilic Janus Gold Nanoparticles via Combining "Solid-State Grafting-to―and "Grafting-from― Methods. Journal of the American Chemical Society, 2008, 130, 11594-11595.	13.7	237
5	Carbon nanotube induced polymer crystallization: The formation of nanohybrid shish–kebabs. Polymer, 2009, 50, 953-965.	3.8	234
6	Structure and Morphology Control in Crystalline Polymer–Carbon Nanotube Nanocomposites. Macromolecules, 2013, 46, 2877-2891.	4.8	197
7	Directed Self-Assembly of Nanoparticles for Nanomotors. ACS Nano, 2013, 7, 5192-5198.	14.6	167
8	Reduced Graphene Oxide-Induced Polyethylene Crystallization in Solution and Nanocomposites. Macromolecules, 2012, 45, 993-1000.	4.8	164
9	How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?. Macromolecules, 2014, 47, 3978-3986.	4.8	163
10	Immobilizing Au Nanoparticles with Polymer Single Crystals, Patterning and Asymmetric Functionalization. Journal of the American Chemical Society, 2007, 129, 12-13.	13.7	158
11	Morphology and Crystallization Behavior of HDPE/CNT Nanocomposite. Journal of Macromolecular Science - Physics, 2006, 45, 231-245.	1.0	157
12	Dense and Dynamic Polyethylene Glycol Shells Cloak Nanoparticles from Uptake by Liver Endothelial Cells for Long Blood Circulation. ACS Nano, 2018, 12, 10130-10141.	14.6	153
13	Alternating patterns on single-walled carbon nanotubes. Nature Nanotechnology, 2009, 4, 358-362.	31.5	129
14	Patterning Polyethylene Oligomers on Carbon Nanotubes Using Physical Vapor Deposition. Nano Letters, 2006, 6, 1007-1012.	9.1	126
15	"Chemically Shielded―Poly(ethylene oxide) Single Crystal Growth and Construction of Channel-Wire Arrays with Chemical and Geometric Recognitions on a Submicrometer Scale. Macromolecules, 2004, 37, 5292-5299.	4.8	122
16	Correlating Electrode–Electrolyte Interface and Battery Performance in Hybrid Solid Polymer Electrolyteâ€Based Lithium Metal Batteries. Advanced Energy Materials, 2017, 7, 1701231.	19.5	118
17	2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Advances, 2019, 1, 395-402.	4.6	117
18	Onset of Tethered Chain Overcrowding. Physical Review Letters, 2004, 93, 028301.	7.8	113

#	Article	IF	CITATIONS
19	Double Twist in Helical Polymer "Soft―Crystals. Physical Review Letters, 1999, 83, 4558-4561.	7.8	95
20	Molecular Orientations in Flat-Elongated and Helical Lamellar Crystals of a Main-Chain Nonracemic Chiral Polyester. Journal of the American Chemical Society, 2000, 122, 72-79.	13.7	91
21	Hierarchically Ordered Polymer Nanofibers via Electrospinning and Controlled Polymer Crystallization. Macromolecules, 2008, 41, 9516-9521.	4.8	87
22	Highâ€Capacity Allâ€Solidâ€State Sodium Metal Battery with Hybrid Polymer Electrolytes. Advanced Energy Materials, 2018, 8, 1801885.	19.5	87
23	Mimicking Bone Nanostructure by Combining Block Copolymer Self-Assembly and 1D Crystal Nucleation. ACS Nano, 2013, 7, 8251-8257.	14.6	85
24	Left or Right, It Is a Matter of One Methylene Unit. Journal of the American Chemical Society, 2001, 123, 2462-2463.	13.7	83
25	Homo- and Hetero-Particle Clusters Formed by Janus Nanoparticles with Bicompartment Polymer Brushes. Macromolecules, 2010, 43, 9234-9238.	4.8	83
26	Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nature Communications, 2016, 7, 11119.	12.8	81
27	Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer, 2016, 102, 119-126.	3.8	77
28	Polymer Single Crystal As Magnetically Recoverable Support for Nanocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 1346-1350.	4.6	74
29	Polymer single crystal meets nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2436-2440.	2.1	73
30	Correlated Perovskites as a New Platform for Superâ€Broadbandâ€Tunable Photonics. Advanced Materials, 2016, 28, 9117-9125.	21.0	72
31	Decorin Regulates the Aggrecan Network Integrity and Biomechanical Functions of Cartilage Extracellular Matrix. ACS Nano, 2019, 13, 11320-11333.	14.6	67
32	Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface. Nature Communications, 2016, 7, 10599.	12.8	63
33	Block copolymer crystalsomes withÂan ultrathin shell to extend blood circulation time. Nature Communications, 2018, 9, 3005.	12.8	61
34	Anisotropic ion transport in nanostructured solid polymer electrolytes. RSC Advances, 2015, 5, 48793-48810.	3.6	59
35	Crystalline Block Copolymer Decorated, Hierarchically Ordered Polymer Nanofibers. Macromolecules, 2010, 43, 9918-9927.	4.8	58
36	Polymer Decoration on Carbon Nanotubes via Physical Vapor Deposition. Langmuir, 2007, 23, 8522-8525.	3.5	56

#	Article	IF	CITATIONS
37	Programmable Nanoparticle Assembly via Polymer Single Crystals. Macromolecules, 2009, 42, 9394-9399.	4.8	56
38	Thermoresponsive Amphiphilic Janus Silica Nanoparticles via Combining "Polymer Single-Crystal Templating―and "Grafting-from―Methods. Macromolecules, 2012, 45, 8780-8789.	4.8	56
39	A micromotor based on polymer single crystals and nanoparticles: toward functional versatility. Nanoscale, 2014, 6, 8601-8605.	5.6	56
40	Anisotropic Ion Transport in a Poly(ethylene oxide)–LiClO ₄ Solid State Electrolyte Templated by Graphene Oxide. Macromolecules, 2015, 48, 4503-4510.	4.8	56
41	Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids. Energy Storage Materials, 2020, 29, 273-280.	18.0	55
42	Polymer Single Crystal Templated Janus Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 169-175.	3.9	51
43	A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery. Energy Storage Materials, 2020, 29, 42-51.	18.0	51
44	One-step fabrication of multifunctional micromotors. Nanoscale, 2015, 7, 13918-13923.	5.6	50
45	Responsive Shape Change of Sub-5 nm Thin, Janus Polymer Nanoplates. ACS Macro Letters, 2016, 5, 651-655.	4.8	49
46	Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Singleâ€Crystal Templating. Angewandte Chemie - International Edition, 2017, 56, 13645-13649.	13.8	49
47	Early-Stage Formation of Helical Single Crystals and Their Confined Growth in Thin Film. Macromolecules, 2001, 34, 3634-3641.	4.8	48
48	Polymer Single Crystal-Decorated Superhydrophobic Buckypaper with Controlled Wetting and Conductivity. ACS Nano, 2012, 6, 1204-1213.	14.6	48
49	Janus Polymer Single Crystal Nanosheet via Evaporative Crystallization. ACS Macro Letters, 2014, 3, 675-678.	4.8	48
50	Indentation load relaxation experiments with indentation depth in the submicron range. Journal of Materials Research, 1990, 5, 2100-2106.	2.6	47
51	Tuning Ion Conducting Pathways Using Holographic Polymerization. Nano Letters, 2012, 12, 310-314.	9.1	46
52	Hairy particleâ€supported 4â€ <i>N</i> , <i>N</i> â€dialkylaminopyridine: An efficient and recyclable nucleophilic organocatalyst. Journal of Polymer Science Part A, 2008, 46, 3438-3446.	2.3	45
53	Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer, 2019, 170, 198-203.	3.8	45
54	A biodegradable, all-polymer micromotor for gas sensing applications. Journal of Materials Chemistry C, 2016, 4, 5945-5952.	5 . 5	44

#	Article	IF	CITATIONS
55	Thermosensitive polymer brushâ€supported 4â€ <i>N,N</i> â€dialkylaminopyridine on silica particles as catalyst for hydrolysis of an activated ester in aqueous buffers: Comparison of activity with linear polymerâ€supported version and effect of LCST transition. Journal of Polymer Science Part A, 2009, 47, 2853-2870.	2.3	43
56	Bending single-walled carbon nanotubes into nanorings using a Pickering emulsion-based process. Carbon, 2012, 50, 1769-1775.	10.3	43
57	Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer, 2016, 101, 311-318.	3.8	43
58	Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34904-34912.	8.0	43
59	Poly(ethylene oxide) Single Crystals as Templates for Au Nanoparticle Patterning and Asymmetrical Functionalization. Macromolecules, 2008, 41, 149-155.	4.8	41
60	Janus gold nanoparticle with bicompartment polymer brushes templated by polymer single crystals. Polymer, 2010, 51, 4814-4822.	3.8	41
61	Single-walled carbon nanotube nanoring induces polymer crystallization at liquid/liquid interface. Polymer, 2015, 59, 1-9.	3.8	39
62	Probing Diffusion of Single Nanoparticles at Water–Oil Interfaces. Small, 2011, 7, 3502-3507.	10.0	38
63	Polymer-single-crystal@nanoparticle nanosandwich for surface enhanced Raman spectroscopy. Journal of Materials Chemistry, 2012, 22, 15526.	6.7	38
64	Lightâ€directed mesoscale phase separation via holographic polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 232-250.	2.1	36
65	Temperature-Induced Shape Changing of Thermosensitive Binary Heterografted Linear Molecular Brushes between Extended Wormlike and Stable Globular Conformations. Macromolecules, 2017, 50, 1645-1656.	4.8	36
66	Janus nanoparticle dimers and chains via polymer single crystals. Journal of Materials Chemistry, 2011, 21, 13155.	6.7	35
67	Electric Field-Induced, Reversible Lotus-to-Rose Transition in Nanohybrid Shish Kebab Paper with Hierarchical Roughness. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12089-12098.	8.0	35
68	Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 6914-6921.	9.1	35
69	Carbon Nanotubeâ€Directed Polytetrafluoroethylene Crystal Growth via Initiated Chemical Vapor Deposition. Macromolecular Rapid Communications, 2013, 34, 251-256.	3.9	34
70	Hierarchically ordered polymer nanofiber shish kebabs as a bone scaffold material. Journal of Biomedical Materials Research - Part A, 2017, 105, 1786-1798.	4.0	33
71	Plasticized Hybrid Network Solid Polymer Electrolytes for Lithiumâ€Metal Batteries. Advanced Materials Interfaces, 2019, 6, 1801445.	3.7	33
72	Structure and Morphology of Poly(lactic acid) Stereocomplex Nanofiber Shish Kebabs. ACS Macro Letters, 2020, 9, 103-107.	4.8	33

#	Article	IF	Citations
73	The effects of underfill on the reliability of flip chip solder joints. Journal of Electronic Materials, 1999, 28, 1017-1022.	2.2	32
74	Competition between liquid crystallinity and block copolymerself-assembly in core–shell rod–coil block copolymers. Soft Matter, 2008, 4, 458-461.	2.7	32
75	Janus hybrid hairy nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1620-1640.	2.1	31
76	Light-triggered unfolding of single linear molecular bottlebrushes from compact globular to wormlike nano-objects in water. Polymer Chemistry, 2017, 8, 2702-2712.	3.9	31
77	Polymer crystallization/melting induced thermal switching in a series of holographically patterned Bragg reflectors. Soft Matter, 2005, 1, 238.	2.7	30
78	Layer-in-Layer Hierarchical Nanostructures Fabricated by Combining Holographic Polymerization and Block Copolymer Self-Assembly. Nano Letters, 2007, 7, 3128-3133.	9.1	30
79	Directed Nanoparticle Assembly through Polymer Crystallization. Chemistry - A European Journal, 2020, 26, 349-361.	3.3	30
80	The rise of semicrystalline polymers and why are they still interesting. Polymer, 2020, 211, 123150.	3.8	30
81	Breaking translational symmetry via polymer chain overcrowding in molecular bottlebrush crystallization. Nature Communications, 2020, 11, 2152.	12.8	29
82	Single-Walled Carbon Nanotube-Induced Orthogonal Growth of Polyethylene Single Crystals at a Curved Liquid/Liquid Interface. ACS Macro Letters, 2014, 3, 175-179.	4.8	26
83	Helical single-lamellar crystals thermotropically formed in a synthetic nonracemic chiral main-chain polyester. Physical Review B, 1999, 60, 12675-12680.	3.2	25
84	Poly(butylene terephthalate)-b-poly(ethylene oxide) alternating multiblock copolymers: Synthesis and application in solid polymer electrolytes. Polymer, 2017, 128, 188-199.	3.8	25
85	Polyethylene nano crystalsomes formed at a curved liquid/liquid interface. Nanoscale, 2018, 10, 268-276.	5 . 6	25
86	Terraced and Smooth Gradient Polymer Brushes via a Polymer Singleâ€Crystal Assisted Grafting‶o Method. Angewandte Chemie - International Edition, 2018, 57, 15758-15761.	13.8	24
87	Engineering long-circulating nanomaterial delivery systems. Current Opinion in Biotechnology, 2020, 66, 131-139.	6.6	24
88	Directed self-assembly of hetero-nanoparticles using a polymer single crystal template. Nanoscale, 2012, 4, 7641.	5.6	22
89	Brownian Diffusion of Individual Janus Nanoparticles at Water/Oil Interfaces. ACS Nano, 2020, 14, 10095-10103.	14.6	22
90	Strain aging and load relaxation behavior of type 316 stainless steel at room temperature. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 1757-1767.	1.4	20

#	Article	IF	Citations
91	On the structure of holographic polymer-dispersed polyethylene glycol. Polymer, 2006, 47, 8147-8154.	3.8	20
92	Interfacial reaction-induced morphological instabilities in thin Al/Pt and Al/Pd films. Journal of Materials Research, 1987, 2, 557-567.	2.6	19
93	Confined and Directed Polymer Crystallization at Curved Liquid/Liquid Interface. Macromolecular Chemistry and Physics, 2018, 219, 1700455.	2.2	19
94	One-step formation of responsive "dumbbell―nanoparticle dimers via quasi-two-dimensional polymer single crystals. Nanoscale, 2014, 6, 4551-4554.	5.6	18
95	Nanoparticle mediated micromotor motion. Nanoscale, 2015, 7, 4949-4955.	5.6	18
96	Structure of Negative Spherulites of Even–Even Polyamides. Introducing a Complex Multicomponent Spherulite Architecture. Macromolecules, 2018, 51, 5138-5156.	4.8	18
97	Anomalous Ostwald Ripening Enables 2D Polymer Crystals via Fast Evaporation. Physical Review Letters, 2019, 123, 207801.	7.8	18
98	Morphology control in semicrystalline solid polymer electrolytes for lithium batteries. Molecular Systems Design and Engineering, 2019, 4, 793-803.	3.4	18
99	Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes. Giant, 2020, 2, 100021.	5.1	18
100	Structure and Morphology of Poly(vinylidene fluoride) Nanoscrolls. ACS Macro Letters, 2018, 7, 75-79.	4.8	17
101	Adaptable Multivalent Hairy Inorganic Nanoparticles. Journal of the American Chemical Society, 2021, 143, 16919-16924.	13.7	17
102	Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization. Journal of Power Sources, 2014, 271, 597-603.	7.8	16
103	Unique Supramolecular Liquidâ€Crystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie - International Edition, 2018, 57, 13454-13458.	13.8	16
104	A nearly quantitative synthetic approach towards monocyclic polystyrenes and the solvent, concentration and molecular weight effect on cyclic yield. Polymer, 2016, 101, 379-387.	3.8	15
105	Electrospun poly(뵉 \in caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1141-1149.	3.4	15
106	Frustrated Layered Self-Assembly Induced Superlattice from Two-Dimensional Nanosheets. Nano Letters, 2020, 20, 8647-8653.	9.1	15
107	Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy. Physical Review E, 2013, 87, 012403.	2.1	14
108	Impacts of maturation on the micromechanics of the meniscus extracellular matrix. Journal of Biomechanics, 2018, 72, 252-257.	2.1	14

#	Article	IF	Citations
109	Nanostructured, Highly Anisotropic, and Mechanically Robust Polymer Electrolyte Membranes via Holographic Polymerization. Advanced Materials Interfaces, 2018, 5, 1700861.	3.7	13
110	A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone Scaffolds. Regenerative Engineering and Translational Medicine, 2018, 4, 107-119.	2.9	13
111	Towards shape-translational symmetry incommensurate polymer crystals. Polymer, 2020, 195, 122407.	3.8	13
112	Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape. Nanoscale, 2015, 7, 11033-11039.	5.6	12
113	Confined Crystal Melting in Edgeless Poly(l-lactic acid) Crystalsomes. ACS Macro Letters, 2020, 9, 1773-1778.	4.8	12
114	Velcro-mimicking surface based on polymer loop brushes. Nanoscale, 2018, 10, 18269-18274.	5.6	11
115	Interpenetrating Network-Based Hybrid Solid and Gel Electrolytes for High Voltage Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 5639-5648.	5.1	11
116	Effect of Fullerene Volume Fraction on Twoâ€Dimensional Crystalâ€Constructed Supramolecular Liquid Crystals. Chemistry - an Asian Journal, 2019, 14, 125-129.	3.3	10
117	Hairy particles: Theory, synthesis, behavior, and applications. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1581-1582.	2.1	9
118	Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single rystal Templating. Angewandte Chemie, 2017, 129, 13833-13837.	2.0	9
119	Biomimetic Mineralization of Hierarchical Nanofiber Shish-Kebabs in a Concentrated Apatite-Forming Solution. ACS Applied Bio Materials, 2021, 4, 571-580.	4.6	9
120	Permeable nanoconfinement of hierarchical block copolymer volume gratings. Soft Matter, 2011, 7, 4729.	2.7	8
121	Tuning periodicity of polymer-decorated carbon nanotubes. Science China Chemistry, 2012, 55, 802-807.	8.2	8
122	Polymer crystallization at liquidâ€liquid interface. Polymer Crystallization, 2018, 1, e10045.	0.8	8
123	Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs. Polymer, 2020, 202, 122644.	3.8	8
124	Water nanocondensation on polymer single crystal-decorated buckypaper. Polymer, 2015, 70, 271-277.	3.8	7
125	Fabrication of 2D Block Copolymer Brushes via a Polymerâ€Singleâ€Crystalâ€Assistedâ€Graftingâ€to Method. Macromolecular Rapid Communications, 2020, 41, e2000228.	3.9	7
126	Holographically patterned soft matter: light directed mesoscale phase separation. Current Opinion in Chemical Engineering, 2013, 2, 63-70.	7.8	6

#	Article	IF	Citations
127	Terraced and Smooth Gradient Polymer Brushes via a Polymer Singleâ€Crystal Assisted Graftingâ€To Method. Angewandte Chemie, 2018, 130, 15984-15987.	2.0	5
128	Decoupling the Modulus and Toughness Effects of Solid Polymer Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 14093-14101.	5.1	4
129	Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth. ACS Applied Materials & Samp; Interfaces, 2022, 14, 484-491.	8.0	4
130	The Use of Transition Metal Oxides in Microwave Sintering of Coal Ash-Derived Bricks and Tiles. Materials Research Society Symposia Proceedings, 1989, 178, 279.	0.1	2
131	Unique Supramolecular Liquidâ€Crystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie, 2018, 130, 13642-13646.	2.0	2
132	MC3T3 E1 cell response to mineralized nanofiber shish kebab structures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1601-1610.	3.4	2
133	Study of Practical Adhesion of Metals to Glass Substrates. Materials Research Society Symposia Proceedings, 1998, 522, 377.	0.1	1
134	Nanoparticle-Decorated Polymer Single Crystals for Nanoscale Materials. ACS Symposium Series, 2016, , 79-90.	0.5	1
135	Low Stress Under Bump Metallizations for Direct Chip Attach. Materials Research Society Symposia Proceedings, 1998, 555, 27.	0.1	O
136	DNET: The Drexel Nano Engineering Track Materials Research Society Symposia Proceedings, 2004, 827, 182.	0.1	0
137	Crystallization Behavior of Polyethylene/Carbon Nanotube Composites., 0,, 523-551.		0
138	Active metasurface devices based on correlated perovskites. , 2016, , .		O
139	Innentitelbild: Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single rystal Templating (Angew. Chem. 44/2017). Angewandte Chemie, 2017, 129, 13720-13720.	2.0	0
140	Frontispiece: Directed Nanoparticle Assembly through Polymer Crystallization. Chemistry - A European Journal, 2020, 26, .	3.3	0