Ken M Cadigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8344937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repression of Wnt/β-catenin signaling by SOX9 and Mastermind-like transcriptional coactivator 2. Science Advances, 2021, 7, .	10.3	22
2	Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucleic Acids Research, 2021, 49, 8625-8641.	14.5	14
3	Diffusion and function of Wnt ligands. PLoS Genetics, 2019, 15, e1008154.	3.5	11
4	The Wnt Transcriptional Switch: TLE Removal or Inactivation?. BioEssays, 2018, 40, 1700162.	2.5	32
5	The matrix protein Tiggrin regulates plasmatocyte maturation in <i>Drosophila</i> larva. Development (Cambridge), 2017, 144, 2415-2427.	2.5	9
6	Wnt target genes and where to find them. F1000Research, 2017, 6, 746.	1.6	71
7	The Role of the C-Clamp in Wnt-Related Colorectal Cancers. Cancers, 2016, 8, 74.	3.7	14
8	Structure-Function Analysis of the C-clamp of TCF/Pangolin in Wnt/ß-catenin Signaling. PLoS ONE, 2014, 9, e86180.	2.5	19
9	Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila. PLoS Genetics, 2014, 10, e1004133.	3.5	32
10	Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System. PLoS Genetics, 2014, 10, e1004509.	3.5	37
11	Bipartite Recognition of DNA by TCF/Pangolin Is Remarkably Flexible and Contributes to Transcriptional Responsiveness and Tissue Specificity of Wingless Signaling. PLoS Genetics, 2014, 10, e1004591.	3.5	24
12	Celebrating 30 Years of Wnt Signaling Meeting Information: EMBO Conference—30 Years of Wnt Signalling, 27 June to 1 July 2012, Egmond aan Zee, Netherlands. Science Signaling, 2012, 5, mr2.	3.6	18
13	TCFs and Wnt/ \hat{l}^2 -catenin Signaling. Current Topics in Developmental Biology, 2012, 98, 1-34.	2.2	92
14	TCF/LEFs and Wnt Signaling in the Nucleus. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007906-a007906.	5.5	574
15	The MicroRNA <i>miRâ€8</i> is a positive regulator of pigmentation and eclosion in <i>Drosophila</i> . Developmental Dynamics, 2012, 241, 161-168.	1.8	61
16	The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets. EMBO Journal, 2011, 30, 2031-2043.	7.8	53
17	Receptor endocytosis: Frizzled joins the ubiquitin club. EMBO Journal, 2010, 29, 2099-2100.	7.8	8
18	<i>Drosophila ptip</i> is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways. Development (Cambridge), 2009, 136, 1929-1938.	2.5	27

Ken M Cadigan

#	Article	IF	CITATIONS
19	Wnt Signaling from Development to Disease: Insights from Model Systems. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002881-a002881.	5.5	267
20	Novel TCF-binding sites specify transcriptional repression by Wnt signalling. EMBO Journal, 2008, 27, 1436-46.	7.8	90
21	Wnt–β-catenin signaling. Current Biology, 2008, 18, R943-R947.	3.9	84
22	Activation of Wingless Targets Requires Bipartite Recognition of DNA by TCF. Current Biology, 2008, 18, 1877-1881.	3.9	68
23	Spenito and Split ends act redundantly to promote Wingless signaling. Developmental Biology, 2008, 314, 100-111.	2.0	24
24	Regulation of the feedback antagonist naked cuticle by Wingless signaling. Developmental Biology, 2008, 321, 446-454.	2.0	26
25	The chromatin remodelers ISWI and ACF1 directly repress Wingless transcriptional targets. Developmental Biology, 2008, 323, 41-52.	2.0	36
26	Wnt/β-Catenin Signaling: Turning the Switch. Developmental Cell, 2008, 14, 322-323.	7.0	28
27	The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15417-15422.	7.1	177
28	Wingless Signaling Induces Widespread Chromatin Remodeling of Target Loci. Molecular and Cellular Biology, 2008, 28, 1815-1828.	2.3	64
29	Drosophila split ends Homologue SHARP Functions as a Positive Regulator of Wnt/β-Catenin/T-Cell Factor Signaling in Neoplastic Transformation. Cancer Research, 2007, 67, 482-491.	0.9	32
30	Wnt/β ateninâ€mediated transcriptional regulation. Advances in Developmental Biology (Amsterdam,) Tj ETQ	0000 rg 0.40 rg	BT /Overlock
31	The Drosophila casein kinase lε/δDiscs overgrown promotes cell survival via activation of DIAP1 expression. Developmental Biology, 2007, 303, 16-28.	2.0	16
32	CBP/p300 are bimodal regulators of Wnt signaling. EMBO Journal, 2007, 26, 2284-2294.	7.8	121
33	C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO Journal, 2006, 25, 2735-2745.	7.8	152
34	Wnt signaling: complexity at the surface. Journal of Cell Science, 2006, 119, 395-402.	2.0	434
35	CELL BIOLOGY: Wnt Signaling Glows with RNAi. Science, 2005, 308, 801-803.	12.6	6
36	Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis.	2.5	64

Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development (Cambridge), 2004, 131, 2409-2418. 36 2.5

#	Article	IF	CITATIONS
37	A Copper-regulated Transporter Required for Copper Acquisition, Pigmentation, and Specific Stages of Development in Drosophila melanogaster. Journal of Biological Chemistry, 2003, 278, 48210-48218.	3.4	102
38	Splits ends is a tissue/promoter specific regulator of Wingless signaling. Development (Cambridge), 2003, 130, 3125-3135.	2.5	32
39	naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes and Development, 2001, 15, 658-671.	5.9	146