
Horng-Jang Liaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8344876/publications.pdf Version: 2024-02-01

HORNG-LANG LIAN

#	Article	IF	CITATIONS
1	A mathematical model for predicting the flash point of binary solutions. Journal of Loss Prevention in the Process Industries, 2002, 15, 429-438.	3.3	127
2	A general model for predicting the flash point of miscible mixtures. Journal of Hazardous Materials, 2006, 137, 38-46.	12.4	99
3	A model for predicting the flash point of ternary flammable solutions of liquid. Combustion and Flame, 2004, 138, 308-319.	5.2	80
4	Relationship between flash point of ionic liquids and their thermal decomposition. Green Chemistry, 2012, 14, 2001.	9.0	79
5	The prediction of the flash point for binary aqueous-organic solutions. Journal of Hazardous Materials, 2003, 101, 83-106.	12.4	74
6	Prediction of miscible mixtures flash-point from UNIFAC group contribution methods. Fluid Phase Equilibria, 2011, 300, 70-82.	2.5	72
7	Flash-point prediction for binary partially miscible mixtures of flammable solvents. Journal of Hazardous Materials, 2008, 153, 1165-1175.	12.4	59
8	Carbon dioxide dilution effect on flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 163, 795-803.	12.4	51
9	Flash-point prediction for binary partially miscible aqueous–organic mixtures. Chemical Engineering Science, 2008, 63, 4543-4554.	3.8	46
10	Autoignition Temperature Data for Methanol, Ethanol, Propanol, 2-Butanol, 1-Butanol, and 2-Methyl-2,4-pentanediol. Journal of Chemical & Engineering Data, 2010, 55, 5059-5064.	1.9	45
11	Flash Point for Ternary Partially Miscible Mixtures of Flammable Solvents. Journal of Chemical & Engineering Data, 2010, 55, 134-146.	1.9	42
12	A model for predicting temperature effect on flammability limits. Fuel, 2016, 178, 179-187.	6.4	41
13	Nitrogen dilution effect on the flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 166, 880-890.	12.4	39
14	Binary mixtures exhibiting maximum flash-point behavior. Journal of Hazardous Materials, 2007, 140, 155-164.	12.4	38
15	Flash-Point Measurements and Modeling for Ternary Partially Miscible Aqueousâ^'Organic Mixtures. Journal of Chemical & Engineering Data, 2010, 55, 3451-3461.	1.9	31
16	Model To Estimate the Flammability Limits of Fuel–Air–Diluent Mixtures Tested in a Constant Pressure Vessel. Industrial & Engineering Chemistry Research, 2012, 51, 2747-2761.	3.7	31
17	Lessons in process safety management learned in the Kaohsiung gas explosion accident in Taiwan. Process Safety Progress, 2016, 35, 228-232.	1.0	29
18	Flammability characteristics of ionic liquid 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Loss Prevention in the Process Industries, 2017, 49, 620-629.	3.3	29

Horng-Jang Liaw

#	Article	IF	CITATIONS
19	Flash-point estimation for binary partially miscible mixtures of flammable solvents by UNIFAC group contribution methods. Fluid Phase Equilibria, 2014, 375, 275-285.	2.5	26
20	A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures. Journal of Hazardous Materials, 2007, 141, 193-201.	12.4	25
21	Study of Two Different Types of Minimum Flash-Point Behavior for Ternary Mixtures. Industrial & Engineering Chemistry Research, 2013, 52, 7579-7585.	3.7	22
22	Effect of stirring on the safety of flammable liquid mixtures. Journal of Hazardous Materials, 2010, 177, 1093-1101.	12.4	20
23	Flash points of partially miscible aqueous–organic mixtures predicted by UNIFAC group contribution methods. Fluid Phase Equilibria, 2013, 345, 45-59.	2.5	20
24	Deficiencies frequently encountered in the management of process safety information. Chemical Engineering Research and Design, 2019, 132, 226-230.	5.6	19
25	Increased flammability hazard when ionic liquid [C6mim][Cl] is exposed to high temperatures. Journal of Hazardous Materials, 2019, 367, 407-417.	12.4	19
26	Flammability limits estimation for fuel–air–diluent mixtures tested in a constant volume vessel. Chemical Engineering Research and Design, 2016, 100, 150-162.	5.6	18
27	Elimination of minimum flash-point behavior by addition of a specified third component. Journal of Loss Prevention in the Process Industries, 2008, 21, 82-100.	3.3	14
28	Flash point investigation of ternary mixtures of 1-butanol/2-pentanol + acetic acid + ethylbenzene. Chemical Engineering Research and Design, 2021, 154, 131-141.	5.6	11
29	Auto-ignition Characteristics of Selected Ionic Liquids. Procedia Engineering, 2014, 84, 285-292.	1.2	10
30	On the relation between azeotropic behavior and minimum / maximum flash point occurrences in binary mixtures of flammable compounds. Fluid Phase Equilibria, 2017, 452, 113-134.	2.5	10
31	Minimum flash point behavior of ternary solutions with three minimum flash point binary constituents. Fuel, 2018, 217, 626-632.	6.4	10
32	Systematic thermal and flammability hazard analysis of a DMPAT explosion accident in Taiwan. Chemical Engineering Research and Design, 2021, 148, 20-33.	5.6	10
33	Lessons in process safety management learned from a pesticide plant explosion in Taiwan. Process Safety Progress, 2018, 37, 104-109.	1.0	9
34	Maximum flash point behavior of ternary mixtures with single and two maximum flash point binary constituents. Chemical Engineering Research and Design, 2020, 143, 293-303.	5.6	9
35	Effect of Heating Temperature on the Flash Point of Ionic Liquids. Procedia Engineering, 2014, 84, 293-296.	1.2	8
36	Classification for ternary flash point mixtures diagrams regarding miscible flammable compounds. Fluid Phase Equilibria, 2018, 466, 110-123.	2.5	7

HORNG-JANG LIAW

#	Article	IF	CITATIONS
37	Flash point study of ternary mixtures comprising binary constituents that exhibit maximum flash point behavior and minimum flash point behavior. Thermochimica Acta, 2022, 713, 179246.	2.7	6
38	Study of Minimum Flash-point Behavior for Ternary Mixtures of Flammable Solvents. Procedia Engineering, 2012, 45, 507-511.	1.2	4
39	Effects of upper explosion limit for isopropyl alcohol by steam inerting at 1Âatm and 150°C by 20-L-apparatus. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1619-1624.	3.6	4
40	The maximum flammable content for binary aqueous–organic mixtures not to flash and their maximum flash points. AICHE Journal, 2018, 64, 263-271.	3.6	4
41	Oxidation and thermal stability analysis of hexadecyl mercaptan added to engine oil. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4685-4696.	3.6	3
42	Mathematical model for describing the influence of initial pressure on the flammability limits of light hydrocarbons at subatmospheric pressures. Journal of Loss Prevention in the Process Industries, 2022, 77, 104776.	3.3	3
43	An efficient method for identifying the chemical hazards of exceptionâ€handling tasks and processes derived from abnormal process conditions. Process Safety Progress, 2021, 40, 23-34.	1.0	2
44	Process safety management lessons learned from a fire accident caused by the reverse flow of highâ€pressure gas in a residual desulfurization process in Taiwan. Process Safety Progress, 0, , .	1.0	2