
Antonio De Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8343855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helical plasma filaments from the self-channeling of intense femtosecond laser pulses in optical fibers. Optics Letters, 2022, 47, 1.	3.3	17
2	High-Resolution 3D Fabrication of Glass Fiber-Reinforced Polymer Nanocomposite (FRPN) Objects by Two-Photon Direct Laser Writing. ACS Applied Materials & Interfaces, 2022, , .	8.0	1
3	Multiphoton ionization of standard optical fibers. Photonics Research, 2022, 10, 1394.	7.0	14
4	Tailoring Resonant Energy Transfer Processes for Sustainable and Bio-Inspired Sensing. Sustainability, 2022, 14, 5337.	3.2	0
5	Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyperâ€Resolution in Twoâ€Photon Direct Laser Writing. Advanced Materials, 2021, 33, e2008644.	21.0	57
6	Ultrafast opto-acoustic modulation of light reflectance in metal-insulator-metal epsilon-near-zero nanocavities. , 2021, , .		0
7	Stability of Film-Forming Dispersions: Affects the Morphology and Optical Properties of Polymeric Films. Polymers, 2021, 13, 1464.	4.5	19
8	Oneâ€Ðimensional Epsilonâ€Nearâ€Zero Crystals. Advanced Photonics Research, 2021, 2, 2100053.	3.6	7
9	Plasmonic Metasurfaces Based on Pyramidal Nanoholes for High-Efficiency SERS Biosensing. ACS Applied Materials & Interfaces, 2021, 13, 43715-43725.	8.0	45
10	Femtosecond nonlinear losses in multimode optical fibers. Photonics Research, 2021, 9, 2443.	7.0	22
11	Hybrid Metastructures in the Epsilon-Near-Zero Regime. , 2021, , 1-28.		0
12	Hybrid Plasmonic/Photonic Nanoscale Strategy for Multilevel Anticounterfeit Labels. ACS Applied Materials & Interfaces, 2021, 13, 49172-49183.	8.0	24
13	Envisioning Quantum Electrodynamic Frameworks Based on Bio-Photonic Cavities. Photonics, 2021, 8, 470.	2.0	4
14	Strong Light–Matter Interaction and Spontaneous Emission Reshaping via Pseudo avity Modes. Advanced Optical Materials, 2021, 9, 2101076.	7.3	2
15	Near-field enhancement in oxidized close gap aluminum dimers. Nanotechnology, 2021, 32, 025305.	2.6	3
16	Understanding and Controlling Mode Hybridization in Multicavity Optical Resonators Using Quantum Theory and the Surface Forces Apparatus. ACS Photonics, 2021, 8, 3517-3525.	6.6	8
17	Inter-Cavity Coupling Strength Control in Metal/Insulator Multilayers for Hydrogen Sensing. Photonics, 2021, 8, 537.	2.0	2
18	Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Communications Physics, 2020, 3, .	5.3	47

#	Article	IF	CITATIONS
19	Opto-mechanically induced thermoplasmonic response of unclonable flexible tags with hotspot fingerprint. Journal of Applied Physics, 2020, 128, 093107.	2.5	16
20	Near- and Mid-Infrared Graphene-Based Photonic Architectures for Ultrafast and Low-Power Electro-Optical Switching and Ultra-High Resolution Imaging. ACS Applied Nano Materials, 2020, 3, 12218-12230.	5.0	20
21	Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials. ACS Applied Materials & Interfaces, 2020, 12, 30181-30188.	8.0	55
22	Color Gamut Behavior in Epsilon Nearâ€Zero Nanocavities during Propagation of Gap Surface Plasmons. Advanced Optical Materials, 2020, 8, 2000487.	7.3	29
23	A Wireless Sensor Network based on Laser-annealed ZnO Nanostructures for Advance Monitoring in Precise Agriculture. , 2020, , .		1
24	Metal/Photoemissive-Blend Hyperbolic Metamaterials for Controlling the Topological Transition. Progress in Optical Science and Photonics, 2019, , 117-128.	0.5	0
25	A comprehensive optical analysis of nanoscale structures: from thin films to asymmetric nanocavities. RSC Advances, 2019, 9, 21429-21437.	3.6	20
26	Guided Modes of Hyperbolic Metamaterial and Their Applications. Progress in Optical Science and Photonics, 2019, , 129-158.	0.5	0
27	Graphene and Topological Insulator-Based Active THz Hyperbolic Metamaterials. Progress in Optical Science and Photonics, 2019, , 159-172.	0.5	1
28	Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications. Progress in Optical Science and Photonics, 2019, , 3-27.	0.5	0
29	New Directions in Thin Film Nanophotonics. Progress in Optical Science and Photonics, 2019, , .	0.5	6
30	Coherent backscattering of light by an anisotropic biological network. Interface Focus, 2019, 9, 20180050.	3.0	23
31	Opto-mechanical control of flexible plasmonic materials. Journal of Applied Physics, 2019, 125, .	2.5	24
32	Resonant Coupling and Gain Singularities in Metal/Dielectric Multishells: Quasi-Static Versus T-Matrix Calculations. Journal of Physical Chemistry C, 2019, 123, 29291-29297.	3.1	6
33	Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates. Journal of Chemical Physics, 2019, 151, 244707.	3.0	14
34	Plasmon-mediated discrete diffraction behaviour of an array of responsive waveguides. Nanoscale, 2019, 11, 17931-17938.	5.6	0
35	Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities. Progress in Optical Science and Photonics, 2019, , 29-44.	0.5	0
36	Resonant Gain Singularities in Hyperbolic Metamaterials. Progress in Optical Science and Photonics, 2019, , 103-115.	0.5	0

#	Article	IF	CITATIONS
37	Environmental Control of the Topological Transition in Metal/Photoemissiveâ€Blend Metamaterials. Advanced Optical Materials, 2018, 6, 1701380.	7.3	7
38	Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes. ACS Nano, 2018, 12, 504-512.	14.6	17
39	The POLICRYPS liquid-crystalline structure for optical applications. Advanced Optical Technologies, 2018, 7, 273-289.	1.7	2
40	A command layer for anisotropic plasmonic photo-thermal effects in liquid crystal. Liquid Crystals, 2018, 45, 2214-2220.	2.2	23
41	Optical vortices generated by edge dislocations in electro-convective instability arrays of nematic liquid crystals. Optics Letters, 2018, 43, 1947.	3.3	2
42	Flexible thermo-plasmonics: an opto-mechanical control of the heat generated at the nanoscale. Nanoscale, 2018, 10, 16556-16561.	5.6	30
43	Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al ₂ O ₃ Bowtie Nanoantennas. ACS Photonics, 2018, 5, 3399-3407.	6.6	20
44	Assessment of EtQxBox complexation in solution by steady-state and time-resolved fluorescence spectroscopy. RSC Advances, 2018, 8, 16314-16318.	3.6	3
45	Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays. ACS Photonics, 2018, 5, 2431-2436.	6.6	22
46	Resonant Gain Singularities in 1D and 3D Metal/Dielectric Multilayered Nanostructures. ACS Nano, 2017, 11, 1012-1025.	14.6	48
47	Thermoplasmonic Effects in Gain-Assisted Nanoparticle Solutions. Journal of Physical Chemistry C, 2017, 121, 24185-24191.	3.1	14
48	Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects. Journal Physics D: Applied Physics, 2017, 50, 435302.	2.8	23
49	Thermo-plasmonic effects on E7 nematic liquid crystal. Molecular Crystals and Liquid Crystals, 2017, 649, 45-49.	0.9	6
50	Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic processes. Nanoscale, 2017, 9, 19279-19289.	5.6	33
51	Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles. Crystals, 2017, 7, 14.	2.2	21
52	Control of the optically induced heating of gold nanoparticles. Photonics Letters of Poland, 2017, 9, 17.	0.4	0
53	Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems. Journal of Nanomaterials, 2016, 2016, 1-21.	2.7	27
54	Broadband optical transparency in plasmonic nanocomposite polymer films via exciton-plasmon energy transfer. Optics Express, 2016, 24, 14632.	3.4	4

#	Article	IF	CITATIONS
55	Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies. Scientific Reports, 2016, 6, 20002.	3.3	54
56	Metal-semiconductor-oxide extreme hyperbolic metamaterials for selectable canalization wavelength. Journal Physics D: Applied Physics, 2016, 49, 08LT01.	2.8	19
57	Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016, 15, 621-627.	27.5	609
58	Battling absorptive losses by plasmon–exciton coupling in multimeric nanostructures. RSC Advances, 2015, 5, 53245-53254.	3.6	12
59	From Life to Life: through new materials and plasmonics. Rendiconti Lincei, 2015, 26, 127-128.	2.2	1
60	Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26, 51-62.	3.6	53
61	Hyperbolic Metamaterials: Design, Fabrication, and Applications of Ultra-Anisotropic Nanomaterials. Nanoscience and Technology, 2015, , 447-467.	1.5	2
62	Gain-assisted plasmonic metamaterials: mimicking nature to go across scales. Rendiconti Lincei, 2015, 26, 161-174.	2.2	12
63	Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique. Journal of Applied Physics, 2014, 116, .	2.5	3
64	Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Applied Physics Letters, 2014, 104, 103103.	3.3	30
65	Optical and electrical characterization of a gold nanoparticle dispersion in a chiral liquid crystal matrix. Journal of Materials Science, 2014, 49, 1805-1811.	3.7	19
66	Improved transmittance in metal-dielectric metamaterials using diffraction grating. Applied Physics Letters, 2014, 104, 171904.	3.3	3
67	Excitation of volume plasmon polaritons in metal-dielectric metamaterials using 1D and 2D diffraction gratings. Journal of Optics (United Kingdom), 2014, 16, 105103.	2.2	28
68	Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules. ACS Photonics, 2014, 1, 371-376.	6.6	29
69	Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Scientific Reports, 2014, 4, 6340.	3.3	80
70	Negative refraction in graphene-based hyperbolic metamaterials. Applied Physics Letters, 2013, 103, .	3.3	135
71	Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Scientific Reports, 2013, 3, 3291.	3.3	105
72	Effects of Gold Nanoparticle Dispersion in a Chiral Liquid Crystal Matrix. Molecular Crystals and Liquid Crystals, 2013, 572, 59-65.	0.9	10

#	Article	IF	CITATIONS
73	Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale, 2013, 5, 6097.	5.6	13
74	POLICRYPS composite structures: realization, characterization and exploitation for electro-optical and all-optical applications. Liquid Crystals Reviews, 2013, 1, 2-19.	4.1	12
75	Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography. Optics Express, 2012, 20, 23138.	3.4	34
76	POLYCRYPS visible curing for spatial light modulator based holography. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3170.	2.1	10
77	Electro-switchable polydimethylsiloxane-based optofluidics. Lab on A Chip, 2012, 12, 3760.	6.0	13
78	Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses. Journal of Materials Chemistry, 2012, 22, 8846.	6.7	28
79	Dispersed and Encapsulated Gain Medium in Plasmonic Nanoparticles: a Multipronged Approach to Mitigate Optical Losses. ACS Nano, 2011, 5, 5823-5829.	14.6	66
80	Gain induced optical transparency in metamaterials. Applied Physics Letters, 2011, 98, .	3.3	45
81	Blue-shifted random-laser-mode selection in gain-assisted anisotropic complex fluids. Physical Review E, 2011, 83, 041711.	2.1	5
82	Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids. Optics Express, 2011, 19, 23532.	3.4	17
83	Publisher's Note: Blue-shifted random-laser-mode selection in gain-assisted anisotropic complex fluids [Phys. Rev. E83, 041711 (2011)]. Physical Review E, 2011, 83, .	2.1	0
84	Observation of hysteresis effects in POLICRYPS holographic gratings. Optics Express, 2010, 18, 31.	3.4	0
85	Direct Measurement of Surface-Induced Orientational Order Parameter Profile above the Nematic-Isotropic Phase Transition Temperature. Physical Review Letters, 2009, 102, 167801.	7.8	20
86	LASER ACTION IN DYE DOPED LIQUID CRYSTALS: FROM PERIODIC STRUCTURES TO RANDOM MEDIA. Journal of Nonlinear Optical Physics and Materials, 2009, 18, 349-365.	1.8	4
87	POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications. Journal of Optics, 2009, 11, 024017.	1.5	55
88	Thermo-recurrent nematic random laser. Optics Express, 2009, 17, 2042.	3.4	43
89	Coherent backscattering and dynamical light localization in liquid crystals driven throughout chaotic regimes. Optics Express, 2009, 17, 13435.	3.4	5
90	Optical nanotomography of anisotropicÂfluids. Nature Physics, 2008, 4, 869-872.	16.7	20

#	Article	IF	CITATIONS
91	Random lasing in freely suspended dye-doped nematic liquid crystals. Optics Letters, 2008, 33, 557.	3.3	48
92	Different reorientational regimes in a liquid crystalline medium undergoing multiple irradiation. , 2008, , .		0
93	Nanoscale alignment and optical nanoimaging of a birefringent liquid. Nanotechnology, 2008, 19, 325709.	2.6	11
94	Statistical analysis of random lasing emission properties in nematic liquid crystals. Physical Review E, 2008, 78, 011707.	2.1	25
95	MODEL FOR MOLECULAR DIRECTOR CONFIGURATION IN A LIQUID CRYSTAL CELL WITH MULTIPLE INTERFACES. Journal of Nonlinear Optical Physics and Materials, 2007, 16, 199-206.	1.8	5
96	Rayleigh-Taylor Instability Experiments with Precise and Arbitrary Control of the Initial Interface Shape. Physical Review Letters, 2007, 99, 204502.	7.8	31
97	Non-Linear Effects in NLC Media Undergoing Two Beams Irradiation. Molecular Crystals and Liquid Crystals, 2007, 465, 71-80.	0.9	1
98	Random lasing in dye doped nematic liquid crystals: the role of confinement geometry. , 2007, 6587, 170.		3
99	Nematic liquid crystal cells for optical spatial solitons (Nematicons). , 2007, , .		0
100	Different reorientational regimes in a liquid crystalline medium undergoing multiple irradiation. Optics Express, 2007, 15, 1663.	3.4	6
101	Distributed feedback micro-laser array: helixed liquid crystals embedded in holographically sculptured polymeric microcavities. Optics Express, 2006, 14, 2695.	3.4	16
102	Realization of particular liquid crystal cells for propagation and characterization of optical spatial soliton. Optics Express, 2006, 14, 5548.	3.4	6
103	Random lasing and weak localization of light in dye-doped nematic liquid crystals. Optics Express, 2006, 14, 7737.	3.4	139
104	In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure. Applied Optics, 2006, 45, 3721.	2.1	45
105	Thermal behavior of random lasing in dye doped nematic liquid crystals. Applied Physics Letters, 2006, 89, 121109.	3.3	42
106	Walking anisotropic spatial solitons and their steering in nematic liquid crystals. , 2005, , FA1.		0
107	Color-Tunable Organic Microcavity Laser Array Using Distributed Feedback. Physical Review Letters, 2005, 94, 063903.	7.8	97
108	Self-healing generation of spatial solitons in liquid crystals. Optics Letters, 2005, 30, 1381.	3.3	40

#	Article	IF	CITATIONS
109	Band edge and defect modes lasing due to confinement of helixed liquid crystals in cylindrical microcavities. Applied Physics Letters, 2005, 87, 221108.	3.3	7
110	Transverse dynamics of anisotropic nematicons. , 2005, , .		0
111	Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Nature, 2004, 432, 733-737.	27.8	350
112	Realisation of a liquid crystal based prototype for duration measurement of picosecond pulses. Optics and Lasers in Engineering, 2003, 39, 379-387.	3.8	0
113	Observation of cancellation and second light-induced Fréedericksz transition in nematic liquid crystals. Optics Letters, 2003, 28, 108.	3.3	4
114	NONLOCAL OPTICAL PROPAGATION IN NONLINEAR NEMATIC LIQUID CRYSTALS. Journal of Nonlinear Optical Physics and Materials, 2003, 12, 525-538.	1.8	51
115	Nonlinear Wave Propagation and Spatial Solitons in Nematic Liquid Crystals. Journal of Nonlinear Optical Physics and Materials, 2003, 12, 123-134.	1.8	76
116	All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters, 2002, 81, 3335-3337.	3.3	217
117	Coherent and Incoherent Spatial Solitons in Bulk Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2002, 375, 617-629.	0.9	4
118	Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Applied Physics Letters, 2000, 77, 7-9.	3.3	365
119	Light self-confinement in planar cells containing nematic liquid crystals. , 0, , .		0
120	Anisotropic spatial solitons and their routing in nematic liquid crystals. , 0, , .		0
121	Coexisting and Competing Light-Matter Interaction Regimes in Meta-Voltaic Systems. , 0, , .		0