
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8343620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of temperature-dependent burn-in decay on the performance of triple cation mixed halide perovskite solar cells. AIP Advances, 2022, 12, 015122.	1.3	6
2	Mechanical properties of polyvinylpyrrolidone/polyvinyl alcoholâ€based solid electrolytes. Journal of Applied Polymer Science, 2022, 139, .	2.6	0
3	Processing of α-Fe2O3 Nanoparticles on Activated Carbon Cloth as Binder-Free Electrode Material for Supercapacitor Energy Storage. Journal of Energy Storage, 2021, 33, 102042.	8.1	24
4	Porous carbon from Manihot Esculenta (cassava) peels waste for charge storage applications. Current Research in Green and Sustainable Chemistry, 2021, 4, 100098.	5.6	14
5	Tuning the Nanoporous Structure of Carbons Derived from the Composite of Cross-Linked Polymers for Charge Storage Applications. ACS Applied Energy Materials, 2021, 4, 1763-1773.	5.1	13
6	Failure Mechanisms of Stretchable Perovskite Lightâ€Emitting Devices under Monotonic and Cyclic Deformations. Macromolecular Materials and Engineering, 2021, 306, 2100435.	3.6	1
7	A study of the effects of a thermally evaporated nanoscale CsBr layer on the optoelectronic properties and stability of formamidinium-rich perovskite solar cells. AIP Advances, 2021, 11, 095112.	1.3	8
8	Valorization of granite micronized stones wastes for eco-friendly production of fired clay bricks. SN Applied Sciences, 2021, 3, 1.	2.9	6
9	Tin Oxide Modified Titanium Dioxide as Electron Transport Layer in Formamidinium-Rich Perovskite Solar Cells. Energies, 2021, 14, 7870.	3.1	6
10	Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells. Semiconductors, 2021, 55, 922-927.	0.5	1
11	Combustion synthesis of battery-type positive electrodes for robust aqueous hybrid supercapacitor. Journal of Energy Storage, 2020, 27, 101160.	8.1	4
12	Tuning the electronic structure and thermodynamic properties of hybrid graphene-hexagonal boron nitride monolayer. FlatChem, 2020, 24, 100194.	5.6	6
13	Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob. Materials, 2020, 13, 5412.	2.9	28
14	The role of hafnium acetylacetonate buffer layer on the performance of lead halide perovskite solar cells derived from dehydrated lead acetate as Pb source. AIP Advances, 2020, 10, .	1.3	1
15	Effect of radiation on the performance of activated carbon base supercapacitor: Part I. Influence of microwave irradiation exposure on electrodes material. Energy Procedia, 2019, 158, 4554-4559.	1.8	3
16	Nickel-cobalt phosphate/graphene foam as enhanced electrode for hybrid supercapacitor. Composites Part B: Engineering, 2019, 174, 106953.	12.0	95
17	Stable ionic-liquid-based symmetric supercapacitors from Capsicum seed-porous carbons. Journal of Electroanalytical Chemistry, 2019, 838, 119-128.	3.8	42
18	Nanostructured Metal Oxides for Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 247-303.	0.5	5

#	Article	IF	CITATIONS
19	Recent advances in solar energy harvesting materials with particular emphasis on photovoltaic materials. , 2019, , .		5
20	Transformation of Plant Biomass Waste into Resourceful Activated Carbon Nanostructures for Mixed-Assembly Type Electrochemical Capacitors. Waste and Biomass Valorization, 2019, 10, 1741-1753.	3.4	15
21	Graphene-Based Electrode Materials for Supercapacitor Applications. , 2019, , 101-130.		Ο
22	Influence of K3Fe(CN)6 on the electrochemical performance of carbon derived from waste tyres by K2CO3 activation. Materials Chemistry and Physics, 2018, 209, 262-270.	4.0	26
23	Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors. Journal of Materials Science, 2018, 53, 5229-5241.	3.7	26
24	Green and scalable synthesis of 3D porous carbons microstructures as electrode materials for high rate capability supercapacitors. RSC Advances, 2018, 8, 40950-40961.	3.6	4
25	Three dimensional modelling of the components in supercapacitors for proper understanding of the contribution of each parameter to the final electrochemical performance. Journal of Materials Chemistry A, 2018, 6, 17481-17487.	10.3	6
26	Raman spectroscopy and imaging of Bernalâ€stacked bilayer graphene synthesized on copper foil by chemical vapour deposition: growth dependence on temperature. Journal of Raman Spectroscopy, 2017, 48, 639-646.	2.5	4
27	Floating of PPY Derived Carbon Based Symmetric Supercapacitor in Alkaline Electrolyte. ECS Transactions, 2017, 75, 1-12.	0.5	3
28	Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. Journal of Colloid and Interface Science, 2017, 494, 325-337.	9.4	98
29	High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). Journal of Materials Science, 2017, 52, 10600-10613.	3.7	47
30	Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability. Applied Energy, 2017, 207, 417-426.	10.1	68
31	Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochimica Acta, 2017, 245, 268-278.	5.2	32
32	Microwave-assisted synthesis of cobalt sulphide nanoparticle clusters on activated graphene foam for electrochemical supercapacitors. RSC Advances, 2017, 7, 20231-20240.	3.6	11
33	Enhanced electrochemical response of activated carbon nanostructures from tree-bark biomass waste in polymer-gel active electrolytes. RSC Advances, 2017, 7, 37286-37295.	3.6	31
34	High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. Journal of Colloid and Interface Science, 2017, 488, 155-165.	9.4	97
35	Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing. Journal of Materials Science, 2017, 52, 2035-2044.	3.7	20
36	Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. Journal of Solid State Electrochemistry, 2017, 21, 859-872.	2.5	84

#	Article	IF	CITATIONS
37	Effect of activated carbon on the enhancement of CO sensing performance of NiO. Journal of Alloys and Compounds, 2017, 694, 155-162.	5.5	19
38	Asymmetric Carbon Supercapacitor with Activated Expanded Graphite as Cathode and Pinecone Tree Activated Carbon as Anode Materials. Energy Procedia, 2017, 105, 4098-4103.	1.8	20
39	Solvothermal synthesis of surfactant free spherical nickel hydroxide/graphene oxide composite for supercapacitor application. Journal of Alloys and Compounds, 2017, 721, 80-91.	5.5	42
40	Transformation of Plant Biomass Waste into Resourceful Activated Carbon Materials for Mixed-Assembly Type Electrochemical Capacitors. ECS Meeting Abstracts, 2017, , .	0.0	0
41	Solvothermal Preparation of Microspherical Flowerlike Ni(OH)2/Graphene Oxide Electrode for Electrochemical Capacitor Application. ECS Meeting Abstracts, 2017, , .	0.0	0
42	Carbon Monoxide Gas Sensing Study Using Hydrothermally Prepared NiO/Graphene Nanosheets Electrode. ECS Meeting Abstracts, 2017, , .	0.0	0
43	Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes. RSC Advances, 2016, 6, 68141-68149.	3.6	35
44	Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochimica Acta, 2016, 213, 107-114.	5.2	56
45	Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AlP Advances, 2016, 6, .	1.3	58
46	A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition. Journal of Applied Physics, 2016, 119, .	2.5	8
47	Asymmetric supercapacitor based on VS ₂ nanosheets and activated carbon materials. RSC Advances, 2016, 6, 38990-39000.	3.6	109
48	A facile hydrothermal reflux synthesis of Ni(OH)2/GF electrode for supercapacitor application. Journal of Materials Science, 2016, 51, 6041-6050.	3.7	36
49	Inkjet-printed graphene electrodes for dye-sensitized solar cells. Carbon, 2016, 105, 33-41.	10.3	94
50	Microwave synthesis: Characterization and electrochemical properties of amorphous activated carbon-MnO2 nanocomposite electrodes. Journal of Alloys and Compounds, 2016, 681, 293-300.	5.5	35
51	A wafer-scale Bernal-stacked bilayer graphene film obtained on a dilute Cu (0.61 at% Ni) foil using atmospheric pressure chemical vapour deposition. RSC Advances, 2016, 6, 28370-28378.	3.6	7
52	High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene. Journal of Colloid and Interface Science, 2016, 484, 77-85.	9.4	25
53	Coniferous pine biomass: A novel insight into sustainable carbon materials for supercapacitors electrode. Materials Chemistry and Physics, 2016, 182, 139-147.	4.0	67
54	Exploring the stability and electronic structure of beryllium and sulphur co-doped graphene: a first principles study. RSC Advances, 2016, 6, 88392-88402.	3.6	19

#	Article	IF	CITATIONS
55	Raman analysis of bilayer graphene film prepared on commercial Cu(0.5 at% Ni) foil. Journal of Raman Spectroscopy, 2016, 47, 553-559.	2.5	15
56	Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Advances, 2016, 6, 1800-1809.	3.6	156
57	Effect of growth time of hydrothermally grown cobalt hydroxide carbonate on its supercapacitive performance. Journal of Physics and Chemistry of Solids, 2016, 94, 17-24.	4.0	23
58	Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. Journal of Power Sources, 2016, 309, 245-253.	7.8	85
59	Preparation and electrochemical investigation of the cobalt hydroxide carbonate/activated carbon nanocomposite for supercapacitor applications. Journal of Physics and Chemistry of Solids, 2016, 88, 60-67.	4.0	37
60	Cycling Performance of Ppy Derived Carbon Based Symmetric Supercapacitors in Aqueous Electrolyte. ECS Meeting Abstracts, 2016, , .	0.0	0
61	Activated Carbon Derived from Tree Bark Biomass for High Performance Electrochemical Capacitors. ECS Meeting Abstracts, 2016, , .	0.0	Ο
62	Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AlP Advances, 2015, 5, .	1.3	42
63	Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Advances, 2015, 5, 107482-107487.	3.6	83
64	Electrochemical Studies of Microwave Synthesised Bimetallic Sulfides Nanostructures As Faradaic Electrodes Electrochimica Acta, 2015, 174, 778-786.	5.2	12
65	Asymmetric supercapacitor based on an α-MoO ₃ cathode and porous activated carbon anode materials. RSC Advances, 2015, 5, 37462-37468.	3.6	59
66	Pulsed laser deposited Cr2O3 nanostructured thin film on graphene as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 637, 219-225.	5.5	49
67	Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors. Electrochimica Acta, 2015, 180, 442-450.	5.2	45
68	Effect of addition of different carbon materials on hydrogel derived carbon material for high performance electrochemical capacitors. Electrochimica Acta, 2015, 186, 277-284.	5.2	23
69	Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochimica Acta, 2015, 151, 386-392.	5.2	118
70	Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochimica Acta, 2015, 151, 591-598.	5.2	40
71	Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning. Journal of Physics and Chemistry of Solids, 2015, 77, 139-145.	4.0	62
72	P3HT:PCBM/nickel-aluminum layered double hydroxide-graphene foam composites for supercapacitor electrodes. Journal of Solid State Electrochemistry, 2015, 19, 445-452.	2.5	26

#	Article	IF	CITATIONS
73	Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. Journal of Power Sources, 2015, 273, 305-311.	7.8	66
74	Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications. Journal of Physics and Chemistry of Solids, 2014, 75, 109-114.	4.0	59
75	Functionalized graphene foam as electrode for improved electrochemical storage. Journal of Solid State Electrochemistry, 2014, 18, 2359-2365.	2.5	30
76	Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors. AIP Advances, 2014, 4, 097122.	1.3	13
77	Polypyrrole/graphene nanocomposite: High conductivity and low percolation threshold. Synthetic Metals, 2014, 198, 101-106.	3.9	20
78	Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Advances, 2014, 4, 39066.	3.6	42
79	Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochimica Acta, 2013, 114, 48-53.	5.2	51
80	Graphene: Synthesis, Transfer, and Characterization for Dye-Sensitized Solar Cells Applications. Industrial & Engineering Chemistry Research, 2013, 52, 14160-14168.	3.7	38
81	High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AlP Advances, 2013, 3, .	1.3	86
82	Growth of graphene underlayers by chemical vapor deposition. AIP Advances, 2013, 3, .	1.3	13
83	Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. Journal of Materials Science, 2013, 48, 6707-6712.	3.7	102
84	Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. Journal of Solid State Electrochemistry, 2013, 17, 2879-2886.	2.5	27
85	A study of the synthetic methods and properties of graphenes. Science and Technology of Advanced Materials, 2010, 11, 054502.	6.1	164
86	Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. Journal of Physics Condensed Matter, 2010, 22, 375502.	1.8	43