Paul J Kenny

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342628/publications.pdf

Version: 2024-02-01

64 papers

4,149 citations

28 h-index 61 g-index

74 all docs

74 docs citations

74 times ranked 4775 citing authors

#	Article	IF	CITATIONS
1	Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature, 2011, 471, 597-601.	27.8	589
2	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	27.8	520
3	Neurobiology of the nicotine withdrawal syndrome. Pharmacology Biochemistry and Behavior, 2001, 70, 531-549.	2.9	267
4	Nicotine Self-Administration Acutely Activates Brain Reward Systems and Induces a Long-Lasting Increase in Reward Sensitivity. Neuropsychopharmacology, 2006, 31, 1203-1211.	5.4	257
5	The ups and downs of addiction: role of metabotropic glutamate receptors. Trends in Pharmacological Sciences, 2004, 25, 265-272.	8.7	214
6	Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science, 2020, 368, 197-201.	12.6	152
7	Metabotropic glutamate 5 receptor blockade may attenuate cocaine self-administration by decreasing brain reward function in rats. Psychopharmacology, 2005, 179, 247-254.	3.1	140
8	Group II Metabotropic and α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionate (AMPA)/Kainate Glutamate Receptors Regulate the Deficit in Brain Reward Function Associated with Nicotine Withdrawal in Rats. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 1068-1076.	2. 5	139
9	Food addiction: a valid concept?. Neuropsychopharmacology, 2018, 43, 2506-2513.	5.4	138
10	Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology, 2014, 76, 533-544.	4.1	135
11	NMDA Receptors Regulate Nicotine-Enhanced Brain Reward Function and Intravenous Nicotine Self-Administration: Role of the Ventral Tegmental Area and Central Nucleus of the Amygdala. Neuropsychopharmacology, 2009, 34, 266-281.	5.4	132
12	Conditioned Nicotine Withdrawal Profoundly Decreases the Activity of Brain Reward Systems. Journal of Neuroscience, 2005, 25, 6208-6212.	3.6	124
13	Diseases, Disorders, and Comorbidities of Interoception. Trends in Neurosciences, 2021, 44, 39-51.	8.6	112
14	Decreased brain reward function during nicotine withdrawal in C57BL6 mice: Evidence from intracranial self-stimulation (ICSS) studies. Pharmacology Biochemistry and Behavior, 2008, 90, 409-415.	2.9	83
15	Habenular TCF7L2 links nicotine addiction to diabetes. Nature, 2019, 574, 372-377.	27.8	81
16	Low dose cocaine selfâ€administration transiently increases but high dose cocaine persistently decreases brain reward function in rats. European Journal of Neuroscience, 2003, 17, 191-195.	2.6	72
17	Role of $\hat{l}\pm5^*$ nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice. Psychopharmacology, 2013, 229, 503-513.	3.1	70
18	MeCP2 Repression of G9a in Regulation of Pain and Morphine Reward. Journal of Neuroscience, 2014, 34, 9076-9087.	3.6	67

#	Article	IF	CITATIONS
19	Epigenetics, microRNA, and addiction. Dialogues in Clinical Neuroscience, 2014, 16, 335-344.	3.7	67
20	The CHRNA5–A3–B4 Gene Cluster and Smoking: From Discovery to Therapeutics. Trends in Neurosciences, 2016, 39, 851-861.	8.6	61
21	All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends in Pharmacological Sciences, 2016, 37, 1029-1044.	8.7	60
22	Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. Progress in Brain Research, 2017, 235, 93-112.	1.4	59
23	Mechanisms of Nicotine Addiction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a039610.	6.2	59
24	From controlled to compulsive drug-taking: The role of the habenula in addiction. Neuroscience and Biobehavioral Reviews, 2019, 106, 102-111.	6.1	42
25	Retrograde inhibition by a specific subset of interpeduncular $\hat{I}\pm 5$ nicotinic neurons regulates nicotine preference. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13012-13017.	7.1	41
26	Conditioned facilitation of brain reward function after repeated cocaine administration Behavioral Neuroscience, 2003, 117, 1103-1107.	1.2	39
27	An Accessory Agonist Binding Site Promotes Activation of $\hat{l}\pm4\hat{l}^22^*$ Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2015, 290, 13907-13918.	3.4	38
28	Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacological Reviews, 2022, 74, 271-310.	16.0	36
29	Addictionâ€related neuroadaptations following chronic nicotine exposure. Journal of Neurochemistry, 2021, 157, 1652-1673.	3.9	35
30	$\hat{l}\pm 3^*$ Nicotinic Acetylcholine Receptors in the Habenula-Interpeduncular Nucleus Circuit Regulate Nicotine Intake. Journal of Neuroscience, 2021, 41, 1779-1787.	3.6	33
31	Transcriptional mechanisms of drug addiction. Dialogues in Clinical Neuroscience, 2019, 21, 379-387.	3.7	28
32	Synaptic Microtubule-Associated Protein EB3 and SRC Phosphorylation Mediate Structural and Behavioral Adaptations During Withdrawal From Cocaine Self-Administration. Journal of Neuroscience, 2019, 39, 5634-5646.	3.6	27
33	Animal Models of Addiction and Neuropsychiatric Disorders and Their Role in Drug Discovery: Honoring the Legacy of Athina Markou. Biological Psychiatry, 2018, 83, 940-946.	1.3	25
34	Opposing roles for striatonigral and striatopallidal neurons in dorsolateral striatum in consolidating new instrumental actions. Nature Communications, 2021, 12, 5121.	12.8	25
35	Networks of habenula-projecting cortical neurons regulate cocaine seeking. Science Advances, 2021, 7, eabj2225.	10.3	25
36	Corticostriatal microRNAs in addiction. Brain Research, 2015, 1628, 2-16.	2.2	23

#	Article	IF	Citations
37	Neuropeptidomics of the Rat Habenular Nuclei. Journal of Proteome Research, 2018, 17, 1463-1473.	3.7	20
38	A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit. Journal of Biological Chemistry, 2015, 290, 28834-28846.	3.4	16
39	Burst firing sets the stage for depression. Nature, 2018, 554, 304-305.	27.8	15
40	Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology, 2022, 47, 788-799.	5 . 4	12
41	TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors. Frontiers in Pharmacology, 2017, 8, 641.	3.5	7
42	Energy Balance: Lateral Hypothalamus Hoards Food Memories. Current Biology, 2017, 27, R803-R805.	3.9	5
43	HDAC5 Regulates the Formation of Drug Memories. Trends in Molecular Medicine, 2018, 24, 106-108.	6.7	5
44	Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity. Cell Metabolism, 2015, 22, 540-541.	16.2	4
45	Crash course in pallidus–habenula signaling. Nature Neuroscience, 2016, 19, 981-983.	14.8	4
46	α5 nicotinic receptors link smoking to schizophrenia. Nature Medicine, 2017, 23, 277-278.	30.7	4
47	The Promise of Genome Editing for Modeling Psychiatric Disorders. Neuropsychopharmacology, 2018, 43, 223-224.	5.4	4
48	Hippocampal plasticity may drive cocaine relapse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30003-30005.	7.1	4
49	Smoking status links habenular volume to glycated hemoglobin: Findings from the Human Connectome Project-Young Adult. Psychoneuroendocrinology, 2021, 131, 105321.	2.7	4
50	MicroRNA-Mediated Repression Combats Depression. Neuron, 2014, 83, 253-254.	8.1	3
51	Using Opioid Receptors to Expand the Chemogenetic and Optogenetic Toolbox. Neuron, 2015, 86, 853-855.	8.1	3
52	Binge drinking and brain stress systems. Nature, 2015, 520, 168-169.	27.8	3
53	Neuroscience: Brain Mechanisms of Blushing. Current Biology, 2018, 28, R791-R792.	3.9	3
54	The Persistent Challenge of Developing Addiction Pharmacotherapies. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a040311.	6.2	3

#	Article	IF	CITATIONS
55	Melanocortin 4 receptors switch reward to aversion. Journal of Clinical Investigation, 2018, 128, 2757-2759.	8.2	3
56	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	1.3	2
57	Endocannabinoid Signaling in the Habenula Regulates Adaptive Responses to Stress. Biological Psychiatry, 2018, 84, 553-554.	1.3	2
58	Drug Addiction: Mechanisms of Nicotine Dependence Unmasked by Gene Editing. Current Biology, 2018, 28, R1205-R1207.	3.9	2
59	Cocaine-metabolizing skin grafts. Nature Biomedical Engineering, 2019, 3, 81-82.	22.5	2
60	Promoting FOS to an enhanced position. Nature Neuroscience, 2014, 17, 1291-1293.	14.8	1
61	Bariatric Surgery Restores Gut-Brain Signaling to Reduce Fat Intake. Cell Metabolism, 2017, 25, 221-222.	16.2	0
62	Habenular TCF7L2 links nicotine addiction to diabetes: the broad significance. Neuropsychopharmacology, 2021, 46, 267-268.	5.4	0
63	Gene splicing SETs the scene for cocaine addiction. Neuron, 2021, 109, 2802-2804.	8.1	0
64	Development of G αi protein selective μ opioid receptor analgesics to limit sideâ€effects. FASEB Journal, 2019, 33, lb28.	0.5	0