
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Universal design for learning in anatomy education of healthcare students: A scoping review. Anatomical Sciences Education, 2023, 16, 10-26.	3.7	7
2	Inflammation, Lifestyle Factors, and the Microbiomeâ€Gutâ€Brain Axis: Relevance to Depression and Antidepressant Action. Clinical Pharmacology and Therapeutics, 2023, 113, 246-259.	4.7	40
3	Enduring effects of an unhealthy diet during adolescence on systemic but not neurobehavioural measures in adult rats. Nutritional Neuroscience, 2022, 25, 657-669.	3.1	3
4	Motivation and learning methods of anatomy: Associations with mental wellâ€being. Clinical Anatomy, 2022, 35, 26-39.	2.7	4
5	The utility of plasma circulating cell-free messenger RNA as a biomarker of glioma: a pilot study. Acta Neurochirurgica, 2022, 164, 723-735.	1.7	8
6	Prior maternal separation stress alters the dendritic complexity of new hippocampal neurons and neuroinflammation in response to an inflammatory stressor in juvenile female rats. Brain, Behavior, and Immunity, 2022, 99, 327-338.	4.1	8
7	Juvenile stress exerts sex-independent effects on anxiety, antidepressant-like behaviours and dopaminergic innervation of the prelimbic cortex in adulthood and does not alter hippocampal neurogenesis. Behavioural Brain Research, 2022, 421, 113725.	2.2	4
8	Therapeutic Response Evaluation in Advanced Melanoma Patients Incorporating Plasma cfDNA, LDH, VEGF, PD-L1, and IFN-γ Measurements. Anticancer Research, 2022, 42, 801-810.	1.1	0
9	The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy?. Neurobiology of Disease, 2022, 170, 105746.	4.4	7
10	A Reduction in Behavioral Pattern Separation Is Attenuated by Dietary Supplementation with a Magnesium-Rich Marine Mineral Blend in Middle-Aged Rats. Journal of Medicinal Food, 2021, , .	1.5	0
11	Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annual Review of Psychology, 2020, 71, 49-78.	17.7	152
12	Chronic intrahippocampal interleukin-1β overexpression in adolescence impairs hippocampal neurogenesis but not neurogenesis-associated cognition. Brain, Behavior, and Immunity, 2020, 83, 172-179.	4.1	19
13	Nigral overexpression of αâ€synuclein in a rat Parkinson's disease model indicates alterations in the enteric nervous system and the gut microbiome. Neurogastroenterology and Motility, 2020, 32, e13726.	3.0	61
14	Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids. Molecular Psychiatry, 2020, 26, 3240-3252.	7.9	21
15	Differential effects of adolescent and adult-initiated voluntary exercise on context and cued fear conditioning. Neuropharmacology, 2019, 145, 49-58.	4.1	24
16	Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell, 2019, 18, e13007.	6.7	90
17	Toxoplasma gondii: An unwelcome visitor that damages social and neuronal connections. Brain, Behavior, and Immunity, 2019, 80, 4-5.	4.1	2
18	A role for the orphan nuclear receptor TLX in the interaction between neural precursor cells and microglia. Neuronal Signaling, 2019, 3, NS20180177.	3.2	8

#	Article	IF	CITATIONS
19	TLX knockdown in the dorsal dentate gyrus of juvenile rats differentially affects adolescent and adult behaviour. Behavioural Brain Research, 2019, 360, 36-50.	2.2	7
20	Differential effects of adolescent and adultâ€initiated exercise on cognition and hippocampal neurogenesis. Hippocampus, 2019, 29, 352-365.	1.9	30
21	Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. Journal of Neuroimmunology, 2019, 331, 87-96.	2.3	15
22	A low-cost touchscreen operant chamber using a Raspberry Piâ,,¢. Behavior Research Methods, 2018, 50, 2523-2530.	4.0	28
23	The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β. Brain, Behavior, and Immunity, 2018, 70, 268-279.	4.1	14
24	Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the α2-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson's disease. Brain, Behavior, and Immunity, 2018, 69, 456-469.	4.1	21
25	Neuroprotective effects of voluntary running on cognitive dysfunction in an α-synuclein rat model of Parkinson's disease. Neurobiology of Aging, 2018, 65, 60-68.	3.1	16
26	Cover Image, Volume 28, Issue 1. Hippocampus, 2018, 28, C1.	1.9	0
27	Regulation of behaviour by the nuclear receptor <scp>TLX</scp> . Genes, Brain and Behavior, 2018, 17, e12357.	2.2	12
28	TLX is an intrinsic regulator of the negative effects of ILâ€1β on proliferating hippocampal neural progenitor cells. FASEB Journal, 2018, 32, 613-624.	0.5	15
29	Deletion of <scp>TLX</scp> and social isolation impairs exerciseâ€induced neurogenesis in the adolescent hippocampus. Hippocampus, 2018, 28, 3-11.	1.9	28
30	Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain, Behavior, and Immunity, 2018, 74, 252-264.	4.1	33
31	Dietary Supplementation with a Magnesium-Rich Marine Mineral Blend Enhances the Diversity of Gastrointestinal Microbiota. Marine Drugs, 2018, 16, 216.	4.6	41
32	Exercise as therapy for Parkinson's?. Aging, 2018, 10, 1536-1537.	3.1	7
33	Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Translational Psychiatry, 2017, 7, e1081-e1081.	4.8	115
34	Adolescent social isolation stress unmasks the combined effects of adolescent exercise and adult inflammation on hippocampal neurogenesis and behavior. Neuroscience, 2017, 365, 226-236.	2.3	20
35	Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain, Behavior, and Immunity, 2017, 66, 394-412.	4.1	34
36	The Omega-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid (DHA) Reverses Corticosterone-Induced Changes in Cortical Neurons. International Journal of Neuropsychopharmacology, 2016, 19, pyv130.	2.1	14

#	Article	IF	CITATIONS
37	The nuclear receptor Tlx regulates motor, cognitive and anxiety-related behaviours during adolescence and adulthood. Behavioural Brain Research, 2016, 306, 36-47.	2.2	20
38	Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?. Neuroscience and Biobehavioral Reviews, 2016, 61, 121-131.	6.1	146
39	Glycogen Synthase Kinase-3 as a Therapeutic Target for Cognitive Dysfunction in Neuropsychiatric Disorders. CNS Drugs, 2015, 29, 1-15.	5.9	55
40	Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 in Nervous System Development and Disease. Molecular Neurobiology, 2015, 51, 1158-1167.	4.0	27
41	Knockdown of interleukin-1 receptor 1 is not neuroprotective in the 6-hydroxydopamine striatal lesion rat model of Parkinson's disease. International Journal of Neuroscience, 2015, 125, 70-77.	1.6	6
42	A role for mitogen-activated protein kinase phosphatase 1 (MKP1) in neural cell development and survival. Neural Regeneration Research, 2015, 10, 1748.	3.0	8
43	Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neuroscience and Biobehavioral Reviews, 2014, 40, 20-34.	6.1	77
44	Expression of endogenous Mkp1 in 6-OHDA rat models of Parkinson's disease. SpringerPlus, 2014, 3, 205.	1.2	3
45	Mitogen-Activated Protein Kinase Phosphatase (MKP)-1 as a Neuroprotective Agent: Promotion of the Morphological Development of Midbrain Dopaminergic Neurons. NeuroMolecular Medicine, 2013, 15, 435-446.	3.4	33
46	Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials, 2013, 34, 9307-9317.	11.4	105
47	Parkinson's disease in the nuclear age of neuroinflammation. Trends in Molecular Medicine, 2013, 19, 187-196.	6.7	101
48	Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain, Behavior, and Immunity, 2013, 33, 7-13.	4.1	61
49	3D O 2 imaging in the neuronal spheroids. FASEB Journal, 2013, 27, 574.1.	0.5	0
50	Unlocking mechanisms in interleukin-1β-induced changes in hippocampal neurogenesis—a role for GSK-3β and TLX. Translational Psychiatry, 2012, 2, e194-e194.	4.8	46
51	GSK-3 mediates the release of IL-1β, TNF-α and IL-10 from cortical glia. Neurochemistry International, 2012, 61, 666-671.	3.8	93
52	Contributions of central and systemic inflammation to the pathophysiology of Parkinson's disease. Neuropharmacology, 2012, 62, 2154-2168.	4.1	248
53	A role for interleukin-1î² in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Molecular and Cellular Neurosciences, 2012, 49, 311-321.	2.2	108
54	A Phosphorescent Nanoparticleâ€Based Probe for Sensing and Imaging of (Intra)Cellular Oxygen in Multiple Detection Modalities. Advanced Functional Materials, 2012, 22, 4931-4939.	14.9	136

#	Article	IF	CITATIONS
55	Exposure of foetal neural progenitor cells to ILâ€1β impairs their proliferation and alters their differentiation – a role for maternal inflammation?. Journal of Neurochemistry, 2012, 120, 964-973.	3.9	73
56	IL-1Î ² inhibits axonal growth of developing sympathetic neurons. Molecular and Cellular Neurosciences, 2011, 48, 142-150.	2.2	24
57	Analysis of the Impact of CD200 on Neurodegenerative Diseases. , 2011, , .		4
58	Evidence that the marineâ€derived multiâ€mineral aquamin has antiâ€inflammatory effects on cortical glialâ€enriched cultures. Phytotherapy Research, 2011, 25, 765-767.	5.8	28
59	Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. Journal of Neuroimmunology, 2010, 226, 20-26.	2.3	48
60	Tumour necrosis factor-α impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1. Molecular and Cellular Neurosciences, 2010, 43, 127-135.	2.2	102
61	The influence of microglia on the pathogenesis of Parkinson's disease. Progress in Neurobiology, 2009, 89, 277-287.	5.7	247
62	Neuroprotective effects of novel phosphatidylglycerolâ€based phospholipids in the 6â€hydroxydopamine model of Parkinson's disease. European Journal of Neuroscience, 2008, 27, 294-300.	2.6	50
63	Treatment with phosphotidylglycerol-based nanoparticles prevents motor deficits induced by proteasome inhibition: Implications for Parkinson's disease. Behavioural Brain Research, 2008, 195, 271-274.	2.2	10
64	CD200 Ligand–Receptor Interaction Modulates Microglial Activation <i>In Vivo</i> and <i>In Vitro</i> A Role for IL-4. Journal of Neuroscience, 2007, 27, 8309-8313.	3.6	235
65	Treatment with dexamethasone and vitamin D ₃ attenuates neuroinflammatory ageâ€related changes in rat hippocampus. Synapse, 2007, 61, 851-861.	1.2	29
66	The ageâ€related attenuation in longâ€term potentiation is associated with microglial activation. Journal of Neurochemistry, 2006, 99, 1263-1272.	3.9	253
67	Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 221-231.	3.9	46
68	Role of Interleukin-4 in Regulation of Age-related Inflammatory Changes in the Hippocampus. Journal of Biological Chemistry, 2005, 280, 9354-9362.	3.4	187
69	Evidence of an Anti-Inflammatory Role for Vasogen's Immune Modulation Therapy. NeuroImmunoModulation, 2005, 12, 113-116.	1.8	5
70	Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiology of Aging, 2005, 26, 717-728.	3.1	135
71	Evidence of a protective effect of phosphatidylserine-containing liposomes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus. Journal of Neuroimmunology, 2004, 151, 12-23.	2.3	55
72	Lipopolysaccharideâ€induced increase in signalling in hippocampus is abrogated by ILâ€10 – a role for ILâ€1β?. Journal of Neurochemistry, 2004, 88, 635-646.	3.9	124

#	Article	IF	CITATIONS
73	Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Experimental Neurology, 2003, 184, 794-804.	4.1	84
74	Activation of p38 Plays a Pivotal Role in the Inhibitory Effect of Lipopolysaccharide and Interleukin-1β on Long Term Potentiation in Rat Dentate Gyrus. Journal of Biological Chemistry, 2003, 278, 19453-19462.	3.4	150
75	Inhibition of Constitutive Nitric Oxide Production Increases the Severity of Lipopolysaccharide-Induced Sickness Behaviour: A Role for TNF-α. NeuroImmunoModulation, 2002, 10, 367-378.	1.8	9
76	Attenuation of LPS-Induced Changes in Synaptic Activity in Rat Hippocampus by Vasogen's Immune Modulation Therapy. NeuroImmunoModulation, 2002, 10, 40-46.	1.8	25
77	Evidence that interleukin-1β and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. European Journal of Neuroscience, 2001, 14, 1809-1819.	2.6	52
78	The Anti-inflammatory Cytokine, Interleukin (IL)-10, Blocks the Inhibitory Effect of IL-1β on Long Term Potentiation. Journal of Biological Chemistry, 2001, 276, 45564-45572.	3.4	122
79	Lipopolysaccharide administration produces time-dependent and region-specific alterations in tryptophan and tyrosine hydroxylase activities in rat brain. Journal of Neural Transmission, 2000, 107, 1393-1401.	2.8	23
80	Differential effect of chronic antidepressant treatments on lipopolysaccharide-induced depressive-like behavioural symptoms in the rat. Life Sciences, 1999, 65, 1773-1786.	4.3	112
81	Lutein and zeaxanthin: The possible contribution, mechanisms of action and implications of modern dietary intake for cognitive development in children HRB Open Research, 0, 2, 8.	0.6	1