Richard John Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340608/publications.pdf

Version: 2024-02-01

84 papers 2,486 citations

28 h-index 243625 44 g-index

90 all docs

90 docs citations

times ranked

90

1817 citing authors

#	Article	IF	CITATIONS
1	Advances in our understanding of nematode ion channels as potential anthelmintic targets. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 18, 52-86.	3.4	11
2	Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends in Parasitology, 2021, 37, 48-64.	3.3	94
3	The narrow-spectrum anthelmintic oxantel is a potent agonist of a novel acetylcholine receptor subtype in whipworms. PLoS Pathogens, 2021, 17, e1008982.	4.7	10
4	Recording drug responses from adult Dirofilaria immitis pharyngeal and somatic muscle cells. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 15, 1-8.	3.4	2
5	Filaricidal activity of Daniellia oliveri and Psorospermum febrifugum extracts. Parasites and Vectors, 2021, 14, 305.	2.5	4
6	Anthelmintic resistance and homeostatic plasticity (Brugia malayi). Scientific Reports, 2021, 11, 14499.	3.3	7
7	Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 8-16.	3.4	54
8	Diethylcarbamazine activates TRP channels including TRP-2 in filaria, Brugia malayi. Communications Biology, 2020, 3, 398.	4.4	20
9	Adapting techniques for calcium imaging in muscles of adult Brugia malayi. Invertebrate Neuroscience, 2020, 20, 12.	1.8	5
10	Cholinergic receptors on intestine cells of Ascaris suum and activation of nAChRs by levamisole. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 38-50.	3.4	7
11	EAT-18 is an essential auxiliary protein interacting with the non-alpha nAChR subunit EAT-2 to form a functional receptor. PLoS Pathogens, 2020, 16, e1008396.	4.7	17
12	Pharmacological characterization of a homomeric nicotinic acetylcholine receptor formed by Ancylostoma caninum ACR-16. Invertebrate Neuroscience, 2019, 19, 11.	1.8	11
13	Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel. PLoS Pathogens, 2019, 15, e1008041.	4.7	30
14	Menthol acts as a positive allosteric modulator on nematode levamisole sensitive nicotinic acetylcholine receptors. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 44-53.	3.4	12
15	Nuclear option prevents hyperinfection in the Strongyloides worm war. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9-11.	7.1	10
16	Monepantel is a non-competitive antagonist of nicotinic acetylcholine receptors from Ascaris suum and Oesophagostomum dentatum. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 36-42.	3.4	7
17	Anthelmintics – From Discovery to Resistance III (Indian Rocks Beach, FL, 2018). International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 494-495.	3.4	O
18	Functional genomics in <i>Brugia malayi</i> reveal diverse muscle nAChRs and differences between cholinergic anthelmintics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5539-5544.	7.1	35

#	Article	IF	CITATIONS
19	(S)-5-ethynyl-anabasine, a novel compound, is a more potent agonist than other nicotine alkaloids on the nematode Asu -ACR-16 receptor. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 12-22.	3.4	4
20	A brief review on the mode of action of antinematodal drugs. Acta Veterinaria, 2017, 67, 137-152.	0.5	80
21	Pharmacological profile of <i>Ascaris suum</i> ACRâ€16, a new homomeric nicotinic acetylcholine receptor widely distributed in <i>Ascaris</i> tissues. British Journal of Pharmacology, 2016, 173, 2463-2477.	5.4	34
22	The cholinomimetic morantel as an open channel blocker of the Ascaris suum ACR-16 nAChR. Invertebrate Neuroscience, 2016, 16, 10.	1.8	6
23	The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 60-73.	3.4	16
24	Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms. PLoS ONE, 2016, 11, e0146854.	2.5	16
25	Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms. PLoS Neglected Tropical Diseases, 2015, 9, e0004173.	3.0	37
26	The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs. Journal of Helminthology, 2015, 89, 387-397.	1.0	13
27	Tribendimidine: Mode of Action and nAChR Subtype Selectivity in Ascaris and Oesophagostomum. PLoS Neglected Tropical Diseases, 2015, 9, e0003495.	3.0	20
28	Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action. Parasitology Research, 2015, 114, 3059-3068.	1.6	28
29	Anthelmintics: The best way to predict the future is to create it. Veterinary Parasitology, 2015, 212, 18-24.	1.8	4
30	RNA interference in adult Ascaris suum – an opportunity for the development of a functional genomics platform that supports organism-, tissue- and cell-based biology in a nematode parasite. International Journal for Parasitology, 2015, 45, 673-678.	3.1	42
31	Proteomic Analysis of Adult Ascaris suum Fluid Compartments and Secretory Products. PLoS Neglected Tropical Diseases, 2014, 8, e2939.	3.0	55
32	Diethylcarbamazine Increases Activation of Voltage-Activated Potassium (SLO-1) Currents in Ascaris suum and Potentiates Effects of Emodepside. PLoS Neglected Tropical Diseases, 2014, 8, e3276.	3.0	6
33	Investigation of Acetylcholine Receptor Diversity in a Nematode Parasite Leads to Characterization of Tribendimidine- and Derquantel-Sensitive nAChRs. PLoS Pathogens, 2014, 10, e1003870.	4.7	46
34	Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 164-184.	3.4	149
35	Anthelmintics – From Discovery to Resistance. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 218-219.	3.4	23
36	Transcriptomic evaluation of the nicotinic acetylcholine receptor pathway in levamisole-resistant and -sensitive Oesophagostomum dentatum. Molecular and Biochemical Parasitology, 2014, 193, 66-70.	1.1	4

#	Article	IF	CITATIONS
37	Computational cloning of drug target genes of a parasitic nematode, Oesophagostomum dentatum. BMC Genetics, 2013, 14, 55.	2.7	4
38	Derquantel and abamectin: Effects and interactions on isolated tissues of Ascaris suum. Molecular and Biochemical Parasitology, 2013, 188, 79-86.	1.1	25
39	Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle. Parasitology International, 2013, 62, 616-618.	1.3	20
40	Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion. Lab on A Chip, 2013, 13, 650-661.	6.0	24
41	Emodepside and SLO-1 potassium channels: A review. Experimental Parasitology, 2012, 132, 40-46.	1.2	32
42	An integrated fiber-optic microfluidic device for detection of muscular force generation of microscopic nematodes. Lab on A Chip, 2012, 12, 3458.	6.0	18
43	Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors. Invertebrate Neuroscience, 2012, 12, 43-51.	1.8	11
44	Levamisole receptors: a second awakening. Trends in Parasitology, 2012, 28, 289-296.	3.3	73
45	ACR-26: A novel nicotinic receptor subunit of parasitic nematodes. Molecular and Biochemical Parasitology, 2012, 183, 151-157.	1.1	10
46	A microfluidic platform for high-sensitivity, real-time drug screening on C. elegans and parasitic nematodes. Lab on A Chip, 2011, 11, 2385.	6.0	78
47	Anthelmintic resistance: markers for resistance, or susceptibility?. Parasitology, 2011, 138, 160-174.	1.5	96
48	Microfluidic bioassay to characterize parasitic nematode phenotype and anthelmintic resistance. Parasitology, 2011, 138, 80-88.	1.5	19
49	On the mode of action of emodepside: slow effects on membrane potential and voltageâ€activated currents in <i>Ascaris suum</i> . British Journal of Pharmacology, 2011, 164, 453-470.	5.4	25
50	Single-channel recording from adult Brugia malayi. Invertebrate Neuroscience, 2011, 11, 53-57.	1.8	18
51	Levamisole and ryanodine receptors (II): An electrophysiological study in Ascaris suum. Molecular and Biochemical Parasitology, 2010, 171, 8-16.	1.1	13
52	Levamisole and ryanodine receptors (I): A contraction study in Ascaris suum. Molecular and Biochemical Parasitology, 2010, 171, 1-7.	1.1	18
53	Control of Nematode Parasites with Agents Acting on Neuro-Musculature Systems: Lessons for Neuropeptide Ligand Discovery. Advances in Experimental Medicine and Biology, 2010, 692, 138-154.	1.6	35
54	The Nicotinic Acetylcholine Receptors of the Parasitic Nematode Ascaris suum: Formation of Two Distinct Drug Targets by Varying the Relative Expression Levels of Two Subunits. PLoS Pathogens, 2009, 5, e1000517.	4.7	72

#	Article	IF	CITATIONS
55	Effects of SDPNFLRF-amide (PF1) on voltage-activated currents in Ascaris suum muscle. International Journal for Parasitology, 2009, 39, 315-326.	3.1	5
56	Electrophysiological recording from parasitic nematode muscle. Invertebrate Neuroscience, 2008, 8, 167-175.	1.8	4
57	Effects of the muscarinic agonist, 5-methylfurmethiodide, on contraction and electrophysiology of Ascaris suum muscle. International Journal for Parasitology, 2008, 38, 945-957.	3.1	6
58	Levamisole resistance resolved at the singleâ€channel level in <i>Caenorhabditis elegans</i> . FASEB Journal, 2008, 22, 3247-3254.	0.5	81
59	Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology, 2007, 134, 1093-1104.	1.5	76
60	The nematode neuropeptide, AF2 (KHEYLRF-NH2), increases voltage-activated calcium currents in Ascaris suum muscle. British Journal of Pharmacology, 2007, 151, 888-899.	5.4	20
61	lon-channels on parasite muscle: pharmacology and physiology. Invertebrate Neuroscience, 2007, 7, 209-217.	1.8	35
62	Pharmacology of N â€, L â€, and B â€subtypes of nematode nAChR resolved at the singleâ€channel level in Ascaris suum. FASEB Journal, 2006, 20, 2606-2608.	0.5	77
63	Single-channel properties of N- and L-subtypes of acetylcholine receptor in Ascaris suum. International Journal for Parasitology, 2005, 35, 925-934.	3.1	18
64	Brief application of AF2 produces long lasting potentiation of nAChR responses in Ascaris suum. Molecular and Biochemical Parasitology, 2005, 139, 51-64.	1.1	35
65	Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole. Parasitology, 2005, 131, S71.	1.5	54
66	Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist: classification of cholinergic anthelmintics in Ascaris. International Journal for Parasitology, 2004, 34, 1083-1090.	3.1	54
67	Methyridine (2-[2-methoxyethyl]-pyridine]) and levamisole activate different ACh receptor subtypes in nematode parasites: a new lead for levamisole-resistance. British Journal of Pharmacology, 2003, 140, 1068-1076.	5.4	38
68	Paraherquamide and 2-Deoxy-paraherquamide Distinguish Cholinergic Receptor Subtypes in Ascaris Muscle. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 853-860.	2.5	82
69	PF4, a FMRFamide-related peptide, gates low-conductance Clâ^ channels in Ascaris suum. European Journal of Pharmacology, 2002, 456, 11-17.	3.5	20
70	Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in <i>Ascaris suum</i> suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. Journal of Experimental Biology, 2002, 205, 3979-3988.	1.7	13
71	Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. Journal of Experimental Biology, 2002, 205, 3979-88.	1.7	9
72	Changes in properties of adenosine transporters in Trypanosoma evansi and modes of selection of resistance to the melaminophenyl arsenical drug, Mel Cy. Veterinary Parasitology, 2001, 102, 193-208.	1.8	13

#	Article	IF	CITATIONS
73	Pyrantel resistance alters nematode nicotinic acetylcholine receptor single-channel properties. European Journal of Pharmacology, 2000, 394, 1-8.	3.5	33
74	Resistance to levamisole resolved at the single hannel level. FASEB Journal, 1999, 13, 749-760.	0.5	80
75	Anthelmintics and ion-channels: after a puncture, use a patch. International Journal for Parasitology, 1998, 28, 849-862.	3.1	34
76	Heterogeneous levamisole receptors: a single-channel study of nicotinic acetylcholine receptors from Oesophagostomum dentatum. European Journal of Pharmacology, 1997, 322, 249-257.	3.5	21
77	Anthelmintic Actions of the Cyclic Depsipeptide PF1022A and its Electrophysiological Effects on Muscle Cells of Ascaris suum. Pest Management Science, 1996, 48, 343-349.	0.4	22
78	Novel arylaminopyridazine-GABA receptor antagonists examined electrophysiologically in Ascaris suum. European Journal of Pharmacology, 1995, 276, 9-19.	3.5	15
79	The action of pyrantel as an agonist and an open channel blocker at acetylcholine receptors in isolated Ascaris suum muscle vesicles. European Journal of Pharmacology, 1994, 271, 273-282.	3.5	43
80	The activation of nicotinic acetylcholine receptors in the nematode parasiteAscaris suumby the application of levamisole to the cytoplasmic surface of muscle membrane. Pest Management Science, 1993, 37, 293-299.	0.4	9
81	A Study of the Morphology of the Large Reticulospinal Neurons of the Lamprey Ammocoete by Intracellular Injection of Procion Yellow. Brain, Behavior and Evolution, 1979, 16, 1-18.	1.7	29
82	Glycine and GABA induced conductance changes in lamprey reticulospinal neurons and their antagonism by strychnine, thebaine, bicuculline and picrotoxin. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1979, 63, 109-115.	0.2	2
83	Glycine and GABA receptors on lamprey bulbar reticulospinal neurones. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1978, 61, 37-40.	0.2	4
84	An electrophysiological investigation of the projection of the intramedullary primary afferent cells of the lamprey ammocoete. Neuroscience Letters, 1977, 5, 39-43.	2.1	15