Eduard Batlle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340539/publications.pdf Version: 2024-02-01

FOUND BATUE

#	Article	IF	CITATIONS
1	Overcoming TGFÎ ² -mediated immune evasion in cancer. Nature Reviews Cancer, 2022, 22, 25-44.	28.4	122
2	Immune translational control by CPEB4 regulates intestinal inflammation resolution and colorectal cancer development. IScience, 2022, 25, 103790.	4.1	4
3	Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity, 2022, 55, 701-717.e7.	14.3	16
4	Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nature Cancer, 2022, 3, 418-436.	13.2	46
5	Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nature Cancer, 2022, 3, 1052-1070.	13.2	36
6	Stromal SOX2 Upregulation Promotes Tumorigenesis through the Generation of a SFRP1/2-Expressing Cancer-Associated Fibroblast Population. Developmental Cell, 2021, 56, 95-110.e10.	7.0	50
7	Mouse model of colorectal cancer: Orthotopic co-implantation of tumor and stroma cells in cecum and rectum. STAR Protocols, 2021, 2, 100297.	1.2	15
8	Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nature Cell Biology, 2021, 23, 745-757.	10.3	112
9	The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirusÂsmall mRNA. PLoS Pathogens, 2021, 17, e1009931.	4.7	2
10	A single-cell tumor immune atlas for precision oncology. Genome Research, 2021, 31, 1913-1926.	5.5	87
11	Vitamin D differentially regulates colon stem cells in patientâ€derived normal and tumor organoids. FEBS Journal, 2020, 287, 53-72.	4.7	67
12	Protocol for Efficient Protein Synthesis Detection by Click Chemistry in Colorectal Cancer Patient-Derived Organoids Grown In Vitro. STAR Protocols, 2020, 1, 100103.	1.2	4
13	ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer. Cancer Research, 2020, 80, 4668-4680.	0.9	35
14	The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nature Communications, 2020, 11, 6422.	12.8	38
15	Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell, 2020, 26, 845-861.e12.	11.1	59
16	Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nature Biotechnology, 2020, 38, 747-755.	17.5	313
17	In vitro Self-organized Mouse Small Intestinal Epithelial Monolayer Protocol. Bio-protocol, 2020, 10, e3514.	0.4	3
18	Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Scientific Reports, 2019, 9, 10140.	3.3	71

#	Article	IF	CITATIONS
19	Collective cell migration and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal tumors. Nature Communications, 2019, 10, 2311.	12.8	78
20	Transforming Growth Factor-Î ² Signaling in Immunity and Cancer. Immunity, 2019, 50, 924-940.	14.3	1,360
21	TCFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 2018, 554, 538-543.	27.8	1,296
22	Determinants of metastatic competency in colorectal cancer. Molecular Oncology, 2017, 11, 97-119.	4.6	180
23	Understanding the molecular mechanisms driving metastasis. Molecular Oncology, 2017, 11, 3-4.	4.6	52
24	Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer. Cancer Research, 2017, 77, 1730-1740.	0.9	29
25	Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells. Cell Stem Cell, 2017, 20, 801-816.e7.	11.1	158
26	Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis. Gut, 2017, 66, 2069-2079.	12.1	158
27	A genome editing approach to study cancer stem cells in human tumors. EMBO Molecular Medicine, 2017, 9, 869-879.	6.9	93
28	Cancer stem cells revisited. Nature Medicine, 2017, 23, 1124-1134.	30.7	1,895
29	Long-lived force patterns and deformation waves at repulsive epithelial boundaries. Nature Materials, 2017, 16, 1029-1037.	27.5	65
30	Targeting the Microenvironment in Advanced Colorectal Cancer. Trends in Cancer, 2016, 2, 495-504.	7.4	80
31	Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis. Mucosal Immunology, 2016, 9, 950-959.	6.0	29
32	Isolation of Human Colon Stem Cells Using Surface Expression of PTK7. Stem Cell Reports, 2015, 5, 979-987.	4.8	52
33	Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genetics, 2015, 47, 320-329.	21.4	858
34	Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Research, 2015, 43, 5145-5157.	14.5	83
35	Circulating IGF-I and IGFBP3 Levels Control Human Colonic Stem Cell Function and Are Disrupted in Diabetic Enteropathy. Cell Stem Cell, 2015, 17, 486-498.	11.1	60
36	Overlapping DNA Methylation Dynamics in Mouse Intestinal Cell Differentiation and Early Stages of Malignant Progression. PLoS ONE, 2015, 10, e0123263.	2.5	14

#	Article	IF	CITATIONS
37	Conserved Mechanisms of Tumorigenesis in the Drosophila Adult Midgut. PLoS ONE, 2014, 9, e88413.	2.5	45
38	Editorial overview: Cell cycle, differentiation and disease. Current Opinion in Cell Biology, 2014, 31, v-vi.	5.4	0
39	Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information. Molecular Oncology, 2014, 8, 1290-1305.	4.6	98
40	Metastatic Stem Cells: Sources, Niches, and Vital Pathways. Cell Stem Cell, 2014, 14, 306-321.	11.1	591
41	Aâ€ŧoâ€ŀ editing on tRNAs: Biochemical, biological and evolutionary implications. FEBS Letters, 2014, 588, 4279-4286.	2.8	113
42	lro/IRX transcription factors negatively regulate <scp>D</scp> pp/ <scp>TGF</scp> â€î² pathway activity during intestinal tumorigenesis. EMBO Reports, 2014, 15, 1210-1218.	4.5	28
43	TGF-beta in CAF-mediated tumor growth and metastasis. Seminars in Cancer Biology, 2014, 25, 15-22.	9.6	268
44	Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling andÂPTHLH. Nature Cell Biology, 2014, 16, 685-694.	10.3	117
45	Role of tRNA modifications in human diseases. Trends in Molecular Medicine, 2014, 20, 306-314.	6.7	321
46	The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP geneÂexpression. Nature Cell Biology, 2014, 16, 695-707.	10.3	115
47	Immunostaining Protocol: P-Stat3 (Xenograft and Mice). Bio-protocol, 2014, 4, .	0.4	0
48	Long range epigenetic silencing is a transâ€species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells. Molecular Oncology, 2013, 7, 1129-1141.	4.6	13
49	SnapShot: The Intestinal Crypt. Cell, 2013, 152, 1198-1198.e2.	28.9	47
50	Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene, 2013, 32, 3732-3743.	5.9	46
51	Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 2012, 22, 571-584.	16.8	881
52	Molecular Mechanisms of Cell Segregation and Boundary Formation in Development and Tumorigenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008227-a008227.	5.5	161
53	Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nature Cell Biology, 2011, 13, 1100-1107.	10.3	147
54	The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480, 209-214.	27.8	273

#	Article	IF	CITATIONS
55	The Intestinal Stem Cell Signature Identifies Colorectal Cancer Stem Cells and Predicts Disease Relapse. Cell Stem Cell, 2011, 8, 511-524.	11.1	811
56	Specific GATA Factors Act as Conserved Inducers of an Endodermal-EMT. Developmental Cell, 2011, 21, 1051-1061.	7.0	81
57	Control of cell adhesion and compartmentalization in the intestinal epithelium. Experimental Cell Research, 2011, 317, 2695-2701.	2.6	33
58	Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 2011, 17, 1225-1227.	30.7	616
59	A p120-catenin–CK1ε complex regulates Wnt signaling. Journal of Cell Science, 2010, 123, 2621-2631.	2.0	67
60	Intestinal Stem Cells in Mammals and Drosophila. Cell Stem Cell, 2009, 4, 124-127.	11.1	163
61	Eph–ephrin signalling in adult tissues and cancer. Current Opinion in Cell Biology, 2008, 20, 194-200.	5.4	124
62	A new identity for the elusive intestinal stem cell. Nature Genetics, 2008, 40, 818-819.	21.4	12
63	EphB–ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nature Genetics, 2007, 39, 1376-1383.	21.4	242
64	EphB/EphrinB Receptors and Wnt Signaling in Colorectal Cancer. Cancer Research, 2006, 66, 2-5.	0.9	133
65	EphB receptor activity suppresses colorectal cancer progression. Nature, 2005, 435, 1126-1130.	27.8	375
66	Down-regulation of Rap1 activity is involved in ephrinB1-induced cell contraction. Biochemical Journal, 2005, 389, 465-469.	3.7	18
67	Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes and Development, 2004, 18, 1385-1390.	5.9	700
68	SIGNALING PATHWAYS IN INTESTINAL DEVELOPMENT AND CANCER. Annual Review of Cell and Developmental Biology, 2004, 20, 695-723.	9.4	453
69	Complete Polarization of Single Intestinal Epithelial Cells upon Activation of LKB1 by STRAD. Cell, 2004, 116, 457-466.	28.9	482
70	Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 2003, 15, 763-770.	5.4	195
71	Snail Induction of Epithelial to Mesenchymal Transition in Tumor Cells Is Accompanied by MUC1 Repression andZEB1 Expression. Journal of Biological Chemistry, 2002, 277, 39209-39216.	3.4	407
72	The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell, 2002, 111, 241-250.	28.9	1,897

#	Article	IF	CITATIONS
73	β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB. Cell, 2002, 111, 251-263.	28.9	1,039
74	Intercellular Junctions, Apical Differentiation, and Infiltrative Features in Colon Cancer: An Ultrastructural Study. Ultrastructural Pathology, 2001, 25, 289-294.	0.9	3
75	The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2000, 2, 84-89.	10.3	2,355
76	Adenomatous polyposis coli protein (APC)-independent regulation of β-catenin/Tcf-4 mediated transcription in intestinal cells. Biochemical Journal, 1999, 344, 565.	3.7	5
77	Protein Kinase C-α Activity Inversely Modulates Invasion and Growth of Intestinal Cells. Journal of Biological Chemistry, 1998, 273, 15091-15098.	3.4	47
78	Evidence for a role of conventional protein kinase-Cα in the control of homotypic contacts and cell scattering of HT-29 human intestinal cells. Biochemical Journal, 1996, 315, 1049-1054.	3.7	24
79	TCEN-49, a monoclonal antibody that identifies a central body antigen in the planarian Dugesia (Girardia) tigrina. Implications for pattern formation and positional signalling mechanisms. Hydrobiologia, 1995, 305, 235-240.	2.0	5
80	TCAV-1, a monoclonal antibody specific to epithelial pharyngeal cells in the planarian Dugesia (Girardia) tigrina. Application to pattern formation of the pharynx during regeneration. Hydrobiologia, 1995, 305, 263-264.	2.0	2
81	Antipeptide antibodies directed against the C-terminus of protein kinase Cζ (PKCζ) react with a Ca2+- and TPA-sensitive PKC in HT-29 human intestinal epithelial cells. FEBS Letters, 1994, 344, 161-165.	2.8	15