Inke S Näthke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8339736/publications.pdf Version: 2024-02-01

INKES NÃOHKE

#	Article	IF	CITATIONS
1	A Learning-Based Microultrasound System for the Detection of Inflammation of the Gastrointestinal Tract. IEEE Transactions on Medical Imaging, 2021, 40, 38-47.	8.9	14
2	Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Scientific Reports, 2021, 11, 2584.	3.3	16
3	Manipulating the Barrier Function of a Cell Monolayer Using a High-power Miniature Ultrasonic Transducer. , 2021, , .		1
4	An Organoid-derived Cell Layer as an in vitro Model for US-mediated Drug Delivery Studies. , 2020, , .		3
5	Deep Compressed Sensing for Characterizing Inflammation Severity with Microultrasound. , 2020, , .		Ο
6	Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and β-Catenin–Independent Targets by Proteomics. Molecular Cancer Research, 2019, 17, 1828-1841.	3.4	5
7	Loss of adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22. PLoS Biology, 2019, 17, e3000540.	5.6	9
8	Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death and Disease, 2018, 9, 255.	6.3	36
9	Lgr5+ intestinal stem cells reside in an unlicensed G1 phase. Journal of Cell Biology, 2018, 217, 1667-1685.	5.2	43
10	A Prototype Therapeutic Capsule Endoscope for Ultrasound-Mediated Targeted Drug Delivery. Journal of Medical Robotics Research, 2018, 03, 1840001.	1.2	17
11	A Multicellular Model of Intestinal Crypt Buckling and Fission. Bulletin of Mathematical Biology, 2018, 80, 335-359.	1.9	12
12	Critical research gaps and recommendations to inform research prioritisation for more effective prevention and improved outcomes in colorectal cancer. Gut, 2018, 67, 179-193.	12.1	73
13	Ultrasound and Microbubbles Promote the Retention of Fluorescent Compounds in the Small Intestine. , 2018, , .		5
14	Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in in in intestinal organoids. Journal of Cell Science, 2017, 130, 3862-3877.	2.0	18
15	Cancer Biology: APC Delivers Kiss of Death to Focal Adhesions. Current Biology, 2017, 27, R805-R807.	3.9	1
16	Development of a therapeutic capsule endoscope for treatment in the gastrointestinal Tract: Bench testing to translational trial. , 2017, , .		3
17	Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy. Sensors, 2017, 17, 1553.	3.8	15
18	Notice of Removal: A fully-automated insonation system for in vitro investigations of ultrasound-mediated targeted drug delivery. , 2017, , .		1

Ινκε S ΝΑΫρηκε

#	Article	IF	CITATIONS
19	Acoustic radiation pressure as a versatile tool for cell compression and mechanobiology studies. , 2017, , .		0
20	SAP97 Binding Partner CRIPT Promotes Dendrite Growth <i>In Vitro</i> and <i>In Vivo</i> ENeuro, 2017, 4, ENEURO.0175-17.2017.	1.9	10
21	Ultrasound capsule endoscopy: sounding out the future. Annals of Translational Medicine, 2017, 5, 201-201.	1.7	28
22	Combined changes in Wnt signaling response and contact inhibition induce altered proliferation in radiation-treated intestinal crypts. Molecular Biology of the Cell, 2016, 27, 1863-1874.	2.1	18
23	Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche. PLoS Biology, 2016, 14, e1002491.	5.6	81
24	Changes in cell and tissue organization in cancer of the breast and colon. Current Opinion in Cell Biology, 2014, 26, 87-95.	5.4	79
25	High-Energy Particle-Induced Tumorigenesis Throughout the Gastrointestinal Tract. Radiation Research, 2014, 181, 162.	1.5	21
26	Promoting microtubule assembly: A hypothesis for the functional significance of the + TIP network. BioEssays, 2014, 36, 818-826.	2.5	25
27	Stem cell decisions: A twist of fate or a niche market?. Seminars in Cell and Developmental Biology, 2014, 34, 116-123.	5.0	25
28	Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. Journal of Cell Science, 2013, 126, 873-877.	2.0	77
29	Cell and tissue polarity in the intestinal tract during tumourigenesis: cells still know the right way up, but tissue organization is lost. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130014.	4.0	50
30	Computational Models Reveal a Passive Mechanism for Cell Migration in the Crypt. PLoS ONE, 2013, 8, e80516.	2.5	49
31	Importance of the Niche: Wnt Signaling and Stem Cell Plasticity in Intestinal Homeostasis and Disease. , 2013, , 107-120.		1
32	A Two-Dimensional Model of the Colonic Crypt Accounting for the Role of the Basement Membrane and Pericryptal Fibroblast Sheath. PLoS Computational Biology, 2012, 8, e1002515.	3.2	39
33	The microtubule poison vinorelbine kills cells independently of mitotic arrest and targets cells lacking the APC tumour suppressor more effectively. Journal of Cell Science, 2012, 125, 887-895.	2.0	25
34	Tumourigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. DMM Disease Models and Mechanisms, 2012, 5, 940-7.	2.4	20
35	DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nature Structural and Molecular Biology, 2012, 19, 1093-1100.	8.2	130
36	The Adenomatous Polyposis Coli Protein Contributes to Normal Compaction of Mitotic Chromatin. PLoS ONE, 2012, 7, e38102.	2.5	13

Ινκε S ΝΑΫρηκε

#	Article	IF	CITATIONS
37	Antagonistic crosstalk between APC and HIF-1α. Cell Cycle, 2011, 10, 1545-1547.	2.6	16
38	The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Molecular Biology of the Cell, 2011, 22, 3962-3970.	2.1	76
39	Microtubule assembly by the Apc protein is regulated by importin-β—RanGTP. Journal of Cell Science, 2010, 123, 736-746.	2.0	27
40	Adenomatous Polyposis Coli and Hypoxia-inducible Factor-1α Have an Antagonistic Connection. Molecular Biology of the Cell, 2010, 21, 3630-3638.	2.1	47
41	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	3.5	81
42	Spindle Orientation Bias in Gut Epithelial Stem Cell Compartments Is Lost in Precancerous Tissue. Cell Stem Cell, 2010, 6, 175-181.	11.1	225
43	Response to Legraverend etÂal Cell Stem Cell, 2010, 6, 299.	11.1	0
44	Is familial adenomatous polyposis associated with sensorineural hearing loss?. International Journal of Audiology, 2010, 49, 762-764.	1.7	4
45	Cell regulation by the Apc protein. Current Opinion in Cell Biology, 2008, 20, 186-193.	5.4	129
46	Novel self-association of the APC molecule affects APC clusters and cell migration. Journal of Cell Science, 2008, 121, 1916-1925.	2.0	36
47	Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. Journal of Cell Biology, 2007, 176, 183-195.	5.2	160
48	Lack of Adenomatous Polyposis Coli Protein Correlates with a Decrease in Cell Migration and Overall Changes in Microtubule Stability. Molecular Biology of the Cell, 2007, 18, 910-918.	2.1	112
49	Cell polarity in development and cancer. Nature Cell Biology, 2007, 9, 1016-1024.	10.3	325
50	Open Microscopy Environment and FindSpots: integrating image informatics with quantitative multidimensional image analysis. BioTechniques, 2006, 41, 199-208.	1.8	27
51	Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nature Reviews Cancer, 2006, 6, 967-974.	28.4	125
52	Adenomatous Polyposis Coli on Microtubule Plus Ends in Cell Extensions Can Promote Microtubule Net Growth with or without EB1. Molecular Biology of the Cell, 2006, 17, 2331-2345.	2.1	101
53	Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Reports, 2005, 6, 184-190.	4.5	54
54	Tumor-Associated NH2-Terminal Fragments Are the Most Stable Part of the Adenomatous Polyposis Coli Protein and Can Be Regulated by Interactions with COOH-Terminal Domains. Cancer Research, 2005, 65, 5195-5204.	0.9	41

Ινκε S ΝΑ̃¤ηκε

#	Article	IF	CITATIONS
55	The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. Journal of Cell Science, 2005, 118, 4741-4750.	2.0	37
56	Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes and Development, 2004, 18, 1385-1390.	5.9	700
57	The Adenomatous Polyposis Coli Protein Is Required for the Formation of Robust Spindles Formed in CSF Xenopus Extracts. Molecular Biology of the Cell, 2004, 15, 2978-2991.	2.1	77
58	APC at a glance. Journal of Cell Science, 2004, 117, 4873-4875.	2.0	33
59	THE ADENOMATOUS POLYPOSIS COLI PROTEIN: The Achilles Heel of the Gut Epithelium. Annual Review of Cell and Developmental Biology, 2004, 20, 337-366.	9.4	216
60	The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. Journal of Cell Biology, 2002, 157, 1041-1048.	5.2	144
61	Catch and pull a microtubule: getting a grasp on the cortex. Nature Cell Biology, 2001, 3, E226-E228.	10.3	16
62	A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biology, 2001, 3, 429-432.	10.3	510
63	Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Current Biology, 2001, 11, 44-49.	3.9	417
64	The adenomatous polyposis coli protein: in the limelight out at the edge. Trends in Cell Biology, 2001, 11, 378-384.	7.9	80
65	A CSK3â€binding peptide from FRAT1 selectively inhibits the CSK3â€catalysed phosphorylation of Axin and βâ€catenin. FEBS Letters, 1999, 458, 247-251.	2.8	212
66	Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Current Opinion in Cell Biology, 1997, 9, 683-690.	5.4	518
67	The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration Journal of Cell Biology, 1996, 134, 165-179.	5.2	471
68	The cadherin/catenin complex: connections to multiple cellular processes involved in cell adhesion, proliferation and morphogenesis. Seminars in Developmental Biology, 1995, 6, 89-95.	1.3	15
69	Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly Journal of Cell Biology, 1994, 125, 1327-1340.	5.2	593
70	Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells Journal of Cell Biology, 1994, 125, 1341-1352.	5.2	309
71	β-catenin: a common target for the regulation of cell adhesion by Wnt-1 and Src signaling pathways. Trends in Biochemical Sciences, 1994, 19, 538-542.	7.5	120

#	Article	IF	CITATIONS
73	Folding and trimerization of clathrin subunits at the triskelion hub. Cell, 1992, 68, 899-910.	28.9	152