
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8339365/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon, 1995, 33, 1405-1424.                                                                                                                                                                                                               | 1.6 | 440       |
| 2  | Venoms, venomics, antivenomics. FEBS Letters, 2009, 583, 1736-1743.                                                                                                                                                                                                                                | 2.8 | 309       |
| 3  | An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon, 2003, 42, 885-901.                                                                                                                                   | 1.6 | 286       |
| 4  | Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 2008, 65, 2897-2912.                                                                                                     | 5.4 | 230       |
| 5  | Host response toBothrops asper snake venom. Inflammation, 1993, 17, 93-105.                                                                                                                                                                                                                        | 3.8 | 222       |
| 6  | Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins.<br>Toxicon, 2013, 62, 27-39.                                                                                                                                                                     | 1.6 | 210       |
| 7  | A new muscle damaging toxin, myotoxin II, from the venom of the snake Bothrops asper (terciopelo).<br>Toxicon, 1989, 27, 725-733.                                                                                                                                                                  | 1.6 | 206       |
| 8  | Snake Venomics of the Central American Rattlesnake <i>Crotalus simus</i> and the South American<br><i>Crotalus durissus</i> Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along<br><i>Crotalus</i> Dispersal in South America. Journal of Proteome Research, 2010, 9, 528-544. | 3.7 | 206       |
| 9  | Myotoxin II from Bothrops asper (terciopelo) venom is a lysine-49 phospholipase A2. Archives of<br>Biochemistry and Biophysics, 1991, 284, 352-359.                                                                                                                                                | 3.0 | 189       |
| 10 | Medicinal Plants with Inhibitory Properties Against Snake Venoms. Current Medicinal Chemistry, 2005,<br>12, 2625-2641.                                                                                                                                                                             | 2.4 | 181       |
| 11 | Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its<br>transamazonian dispersal and implications of geographic venom variability on snakebite management.<br>Journal of Proteomics, 2011, 74, 510-527.                                                           | 2.4 | 181       |
| 12 | Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Journal of Proteomics, 2009, 72, 165-182.                                                                                                                      | 2.4 | 180       |
| 13 | Pharmacokinetic-Pharmacodynamic Relationships of Immunoglobulin Therapy for Envenomation.<br>Clinical Pharmacokinetics, 2003, 42, 721-741.                                                                                                                                                         | 3.5 | 177       |
| 14 | Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom<br>. Synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. FEBS Journal, 1998, 253,<br>452-461.                                                                    | 0.2 | 161       |
| 15 | Neutralization of local tissue damage induced by Bothrops asper (terciopelo) snake venom. Toxicon,<br>1998, 36, 1529-1538.                                                                                                                                                                         | 1.6 | 161       |
| 16 | Structural and Functional Characterization of BnSP-7, a Lys49 Myotoxic Phospholipase A2 Homologue<br>from Bothrops neuwiedi pauloensis Venom. Archives of Biochemistry and Biophysics, 2000, 378,<br>201-209.                                                                                      | 3.0 | 158       |
| 17 | Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 2009, 73, 57-78.                              | 2.4 | 155       |
| 18 | Myotoxic phospholipases A2 in Bothrops snake venoms: Effect of chemical modifications on the<br>enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie,<br>2000, 82, 755-763.                                                                             | 2.6 | 151       |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Snake venom Lys49 myotoxins: From phospholipases A2 to non-enzymatic membrane disruptors.<br>Toxicon, 2012, 60, 520-530.                                                                                                                                                                       | 1.6 | 146       |
| 20 | Isolation, characterization and molecular cloning of AnMIP, a new α-type phospholipase A2 myotoxin<br>inhibitor from the plasma of the snake Atropoides nummifer (Viperidae: Crotalinae). Comparative<br>Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 146, 60-68. | 1.6 | 145       |
| 21 | Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial<br>(tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon, 1999, 37, 145-158.                                                                                                               | 1.6 | 141       |
| 22 | Snake Venomics and Antivenomics of the Arboreal Neotropical Pitvipers Bothriechis lateralis and Bothriechis schlegelii. Journal of Proteome Research, 2008, 7, 2445-2457.                                                                                                                      | 3.7 | 137       |
| 23 | Trends in Snakebite Envenomation Therapy: Scientific, Technological and Public Health<br>Considerations. Current Pharmaceutical Design, 2007, 13, 2935-2950.                                                                                                                                   | 1.9 | 125       |
| 24 | Pros and cons of different therapeutic antibody formats for recombinant antivenom development.<br>Toxicon, 2018, 146, 151-175.                                                                                                                                                                 | 1.6 | 125       |
| 25 | The dynamics of local tissue damage induced by Bothrops asper snake venom and myotoxin II on the mouse cremaster muscle: An intravital and electron microscopic study. Toxicon, 1994, 32, 41-55.                                                                                               | 1.6 | 124       |
| 26 | Local Tissue Damage Induced by BaP1, a Metalloproteinase Isolated from Bothrops asper (Terciopelo)<br>Snake Venom. Experimental and Molecular Pathology, 1995, 63, 186-199.                                                                                                                    | 2.1 | 117       |
| 27 | Snake Venomics of the Lesser Antillean Pit Vipers <i>Bothrops caribbaeus</i> and <i>Bothrops<br/>lanceolatus</i> : Correlation with Toxicological Activities and Immunoreactivity of a Heterologous<br>Antivenom. Journal of Proteome Research, 2008, 7, 4396-4408.                            | 3.7 | 116       |
| 28 | Identification of the myotoxic site of the Lys49 phospholipase A2 from Agkistrodon piscivorus<br>piscivorus snake venom: synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert<br>membrane-damaging activities. Toxicon, 2001, 39, 1587-1594.                          | 1.6 | 114       |
| 29 | Snake venomics of the South and Central American Bushmasters. Comparison of the toxin<br>composition of Lachesis muta gathered from proteomic versus transcriptomic analysis. Journal of<br>Proteomics, 2008, 71, 46-60.                                                                       | 2.4 | 114       |
| 30 | Strategies in â€~snake venomics' aiming at an integrative view of compositional, functional, and<br>immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including<br>Tropical Diseases, 2017, 23, 26.                                                              | 1.4 | 113       |
| 31 | Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins, 2017, 9, 163.                                                                                                                                                    | 3.4 | 109       |
| 32 | Inhibition of Myotoxic Activity of Bothrops asper Myotoxin II by the Anti-trypanosomal Drug Suramin.<br>Journal of Molecular Biology, 2005, 350, 416-426.                                                                                                                                      | 4.2 | 106       |
| 33 | Venomic and Antivenomic Analyses of the Central American Coral Snake, <i>Micrurus<br/>nigrocinctus</i> (Elapidae). Journal of Proteome Research, 2011, 10, 1816-1827.                                                                                                                          | 3.7 | 105       |
| 34 | The effect of myotoxins isolated from Bothrops snake venoms on multilamellar liposomes:<br>relationship to phospholipase A2, anticoagulant and myotoxic activities. Biochimica Et Biophysica Acta<br>- Biomembranes, 1991, 1070, 455-460.                                                      | 2.6 | 104       |
| 35 | Antivenoms for Snakebite Envenomings. Inflammation and Allergy: Drug Targets, 2011, 10, 369-380.                                                                                                                                                                                               | 1.8 | 104       |
| 36 | Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom<br>immunoprofiling: Identification of key toxin targets for antivenom development. Journal of<br>Proteomics, 2015, 119, 126-142.                                                              | 2.4 | 102       |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Current Pharmaceutical<br>Design, 2016, 22, 5270-5293.                                                                                                 | 1.9 | 101       |
| 38 | Venomous snakes of Costa Rica: Biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. Journal of Proteomics, 2014, 105, 323-339.                               | 2.4 | 97        |
| 39 | Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC<br>Genomics, 2011, 12, 259.                                                                                                          | 2.8 | 96        |
| 40 | Structural and Functional Characterization of Myotoxin I, a Lys49 Phospholipase A2 Homologue from<br>Bothrops moojeni (Caissaca) Snake Venom. Archives of Biochemistry and Biophysics, 2000, 373, 7-15.                        | 3.0 | 95        |
| 41 | Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon.<br>Journal of Proteomics, 2014, 96, 103-116.                                                                                   | 2.4 | 94        |
| 42 | Hyperalgesia induced by Asp49 and Lys49 phospholipases A2 from Bothrops asper snake venom: pharmacological mediation and molecular determinants. Toxicon, 2003, 41, 667-678.                                                   | 1.6 | 93        |
| 43 | Neutralization of the cytolytic and myotoxic activities of phospholipases A2 from Bothrops asper<br>snake venom by glycosaminoglycans of the heparin/heparan sulfate family. Biochemical Pharmacology,<br>1994, 47, 1509-1518. | 4.4 | 92        |
| 44 | Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon, 2016, 122, 7-25.                                                                                     | 1.6 | 89        |
| 45 | Systemic and local myotoxicity induced by snake venom group II phospholipases A2: Comparison between crotoxin, crotoxin B and a Lys49 PLA2 homologue. Toxicon, 2008, 51, 80-92.                                                | 1.6 | 88        |
| 46 | The Phospholipase A2 Homologues of Snake Venoms: Biological Activities and Their Possible Adaptive<br>Roles. Protein and Peptide Letters, 2009, 16, 860-876.                                                                   | 0.9 | 85        |
| 47 | Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Journal of Proteomics, 2017, 150, 98-108.                                                                           | 2.4 | 85        |
| 48 | Broad cytolytic specificity of myotoxin II, a lysine-49 phospholipase A2 of Bothrops asper snake venom.<br>Toxicon, 1994, 32, 1359-1369.                                                                                       | 1.6 | 81        |
| 49 | Isolation and partial characterization of a myotoxin from the venom of the snake Bothrops nummifer.<br>Toxicon, 1986, 24, 885-894.                                                                                             | 1.6 | 79        |
| 50 | Snake Venomics of Central American Pitvipers: Clues for Rationalizing the Distinct Envenomation<br>Profiles of Atropoides nummifer and Atropoides picadoi. Journal of Proteome Research, 2008, 7,<br>708-719.                  | 3.7 | 77        |
| 51 | Synergism between Basic Asp49 and Lys49 Phospholipase A2 Myotoxins of Viperid Snake Venom In Vitro<br>and In Vivo. PLoS ONE, 2014, 9, e109846.                                                                                 | 2.5 | 76        |
| 52 | Comparative study of synthetic peptides corresponding to region 115–129 in Lys49 myotoxic phospholipases A2 from snake venoms. Toxicon, 2003, 42, 307-312.                                                                     | 1.6 | 75        |
| 53 | Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 2009, 54, 949-957.                                                                                                         | 1.6 | 75        |
| 54 | Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a<br>Toxicity Score. Toxicon, 2015, 104, 43-45.                                                                               | 1.6 | 75        |

| #  | Article                                                                                                                                                                                                                                             | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon, 1990, 28, 1127-1129.                                                                                                                                         | 1.6             | 73           |
| 56 | Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. Journal of Proteomics, 2014, 105, 340-350.                                                    | 2.4             | 73           |
| 57 | A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like<br>proteins from viperid snake venoms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014,<br>1844, 2265-2276.                                | 2.3             | 73           |
| 58 | In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nature Communications, 2018, 9, 3928.                                                                                        | 12.8            | 73           |
| 59 | Comparison between IgG and F(ab′)2 polyvalent antivenoms: neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions. Toxicon, 2001, 39, 793-801. | 1.6             | 72           |
| 60 | Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica:<br>Biochemical and toxicological characterizationâ~†. Biochimie, 2010, 92, 273-283.                                                               | 2.6             | 72           |
| 61 | Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus<br>mipartitus (Elapidae), from Colombia and Costa Rica. Journal of Proteomics, 2011, 75, 655-667.                                                       | 2.4             | 72           |
| 62 | Myonecrosis induced in mice by a basic myotoxin isolated from the venom of the snake Bothrops nummifer (jumping viper) from Costa Rica. Toxicon, 1989, 27, 735-745.                                                                                 | 1.6             | 71           |
| 63 | Activation of cellular functions in macrophages by venom secretory Asp-49 and Lys-49 phospholipases A2. Toxicon, 2005, 46, 523-532.                                                                                                                 | 1.6             | 71           |
| 64 | Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon, 2005, 45, 807-815.                                                                    | 1.6             | 70           |
| 65 | Toxicovenomics and antivenom profiling of the Eastern green mamba snake ( Dendroaspis angusticeps) Tj ETQq1                                                                                                                                         | 1.0,7843<br>2.4 | 14 rgBT /Ove |
| 66 | Isolation and biochemical, functional and structural characterization of a novel l-amino acid oxidase<br>from Lachesis muta snake venom. Toxicon, 2012, 60, 1263-1276.                                                                              | 1.6             | 69           |
| 67 | Isolation of basic myotoxins from Bothrops Moojeni and Bothrops Atrox snake venoms. Toxicon, 1990, 28, 1137-1146.                                                                                                                                   | 1.6             | 68           |
| 68 | Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake <i>Bothrops asper</i> . Biochemical Journal, 1997, 326, 853-859.                                                  | 3.7             | 68           |
| 69 | Inhibitory effects of Piper umbellatum and Piper peltatum extracts towards myotoxic phospholipases<br>A2 from Bothrops snake venoms: Isolation of 4-nerolidylcatechol as active principle. Phytochemistry,<br>2005, 66, 1017-1025.                  | 2.9             | 68           |
| 70 | Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different<br>expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal<br>of Proteomics, 2013, 87, 103-121.          | 2.4             | 67           |
| 71 | Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic<br>administration: involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain,<br>2004, 108, 180-191.                          | 4.2             | 66           |
| 72 | Calcium imaging of muscle cells treated with snake myotoxins reveals toxin synergism and presence of acceptors. Cellular and Molecular Life Sciences, 2009, 66, 1718-1728.                                                                          | 5.4             | 66           |

| #  | Article                                                                                                                                                                                                                                                                                   | IF         | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 73 | Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14140-14145.                                                                      | 7.1        | 66            |
| 74 | Assessing the preclinical efficacy of antivenoms: From the lethality neutralization assay to antivenomics. Toxicon, 2013, 69, 168-179.                                                                                                                                                    | 1.6        | 66            |
| 75 | Phospholipases A2 from viperidae snake venoms: how do they induce skeletal muscle damage?. Acta<br>Chimica Slovenica, 2011, 58, 647-59.                                                                                                                                                   | 0.6        | 66            |
| 76 | Varespladib (LY315920) and Methyl Varespladib (LY333013) Abrogate or Delay Lethality Induced by<br>Presynaptically Acting Neurotoxic Snake Venoms. Toxins, 2020, 12, 131.                                                                                                                 | 3.4        | 64            |
| 77 | Neurotoxicity and Other Pharmacological Activities of the Snake Venom Phospholipase A2 OS2:  The<br>N-Terminal Region Is More Important Than Enzymatic Activity. Biochemistry, 2006, 45, 5800-5816.                                                                                       | 2.5        | 63            |
| 78 | Neutralization of four Peruvian Bothrops sp. snake venoms by polyvalent antivenoms produced in Perú and Costa Rica: preclinical assessment. Acta Tropica, 2005, 93, 85-95.                                                                                                                | 2.0        | 61            |
| 79 | Delayed Oral LY333013 Rescues Mice from Highly Neurotoxic, Lethal Doses of Papuan Taipan (Oxyuranus) Tj E                                                                                                                                                                                 | TQq1_1 0.7 | 84314 rgBT /( |
| 80 | Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 2015, 99, 23-35.                                                                                                                                                  | 1.6        | 60            |
| 81 | Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which<br>selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation,<br>molecular cloning and biological properties. Biochemical Journal, 2000, 346, 631-639. | 3.7        | 59            |
| 82 | Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biology International, 2007, 31, 263-268.                                                                                                                           | 3.0        | 59            |
| 83 | Snake Venomics of <i>Crotalus tigris</i> : The Minimalist Toxin Arsenal of the Deadliest Neartic<br>Rattlesnake Venom. Evolutionary Clues for Generating a Pan-Specific Antivenom against Crotalid Type<br>II Venoms. Journal of Proteome Research, 2012, 11, 1382-1390.                  | 3.7        | 59            |
| 84 | Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa<br>Rica reveals two divergent compositional patterns in New World elapids. Toxicon, 2015, 107, 217-233.                                                                                    | 1.6        | 59            |
| 85 | Neutralization of Bothrops asper venom by antibodies, natural products and synthetic drugs:<br>Contributions to understanding snakebite envenomings and their treatment. Toxicon, 2009, 54,<br>1012-1028.                                                                                 | 1.6        | 58            |
| 86 | Innovative Immunization Strategies for Antivenom Development. Toxins, 2018, 10, 452.                                                                                                                                                                                                      | 3.4        | 58            |
| 87 | Local effects induced by coral snake venoms: Evidence of myonecrosis after experimental inoculations of venoms from five species. Toxicon, 1983, 21, 777-783.                                                                                                                             | 1.6        | 57            |
| 88 | Comparative study on the ability of IgG and Fab sheep antivenoms to neutralize local hemorrhage,<br>edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon, 2000, 38, 233-244.                                                                                 | 1.6        | 57            |
| 89 | Systemic cytokine response in children bitten by snakes in Costa Rica. Pediatric Emergency Care, 2001, 17, 425-429.                                                                                                                                                                       | 0.9        | 56            |
| 90 | Snake Venomics of <i>Bothriechis nigroviridis</i> Reveals Extreme Variability among Palm Pitviper<br>Venoms: Different Evolutionary Solutions for the Same Trophic Purpose. Journal of Proteome<br>Research, 2010, 9, 4234-4241.                                                          | 3.7        | 55            |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Isolation and characterization of basic myotoxic phospholipases A2 from Bothrops godmani<br>(Godman's pit viper) snake venom. Archives of Biochemistry and Biophysics, 1992, 298, 135-142.                                          | 3.0  | 54        |
| 92  | Bactericidal and Antiendotoxic Properties of Short Cationic Peptides Derived from a Snake Venom<br>Lys49 Phospholipase A 2. Antimicrobial Agents and Chemotherapy, 2005, 49, 1340-1345.                                             | 3.2  | 54        |
| 93  | Pharmacological activities of a toxic phospholipase a isolated from the venom of the snake Bothrops<br>Asper. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1986, 84, 159-164.                          | 0.2  | 53        |
| 94  | Immunochemical Characterization and Role in Toxic Activities of Region 115–129 of Myotoxin II, a Lys49<br>Phospholipase A2fromBothrops asperSnake Venom. Archives of Biochemistry and Biophysics, 1998, 358,<br>343-350.            | 3.0  | 53        |
| 95  | Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A2.<br>Biochemical Pharmacology, 2003, 66, 1993-2000.                                                                              | 4.4  | 52        |
| 96  | Synthetic Peptides Derived from the C-Terminal Region of Lys49 Phospholipase A2 Homologues from<br>Viperidae Snake Venoms: Biomimetic Activities and Potential Applications. Current Pharmaceutical<br>Design, 2010, 16, 3224-3230. | 1.9  | 52        |
| 97  | Omics Meets Biology: Application to the Design and Preclinical Assessment of Antivenoms. Toxins, 2014, 6, 3388-3405.                                                                                                                | 3.4  | 52        |
| 98  | Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish<br>venom in mice. International Journal of Experimental Pathology, 2001, 82, 55-64.                                             | 1.3  | 51        |
| 99  | Horse immunization with short-chain consensus α-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nature Communications, 2019, 10, 3642.                                                           | 12.8 | 50        |
| 100 | Neutralizing properties of LY315920 toward snake venom group I and II myotoxic phospholipases A2.<br>Toxicon, 2019, 157, 1-7.                                                                                                       | 1.6  | 50        |
| 101 | Activity of hemorrhagic metalloproteinase BaH-1 and myotoxin II from Bothrops asper snake venom on capillary endothelial cells in vitro. Toxicon, 1994, 32, 505-510.                                                                | 1.6  | 49        |
| 102 | Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon, 2010, 56, 1007-1017.                                                                                      | 1.6  | 49        |
| 103 | Structural basis for phospholipase A2-like toxin inhibition by the synthetic compound Varespladib (LY315920). Scientific Reports, 2019, 9, 17203.                                                                                   | 3.3  | 49        |
| 104 | Biological and biochemical activities of Vipera berus (European viper) venom. Toxicon, 1993, 31, 743-753.                                                                                                                           | 1.6  | 48        |
| 105 | Snake venomics of the pit vipers Porthidium nasutum, Porthidium ophryomegas, and Cerrophidion godmani from Costa Rica: Toxicological and taxonomical insights. Journal of Proteomics, 2012, 75, 1675-1689.                          | 2.4  | 48        |
| 106 | Ontogenetic changes in the venom of the snake Lachesis muta stenophrys (bushmaster) from Costa<br>Rica. Toxicon, 1990, 28, 419-426.                                                                                                 | 1.6  | 47        |
| 107 | Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key<br>toxin in gas gangrene. FEBS Journal, 2000, 267, 5191-5197.                                                                  | 0.2  | 47        |
| 108 | A Lys49 phospholipase A2 homologue from Bothrops asper snake venom induces proliferation, apoptosis and necrosis in a lymphoblastoid cell line. Toxicon, 2005, 45, 651-660.                                                         | 1.6  | 47        |

| #   | Article                                                                                                                                                                                                                                                | IF                            | CITATIONS   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| 109 | Cytotoxicity induced in myotubes by a Lys49 phospholipase A2 homologue from the venom of the snake<br>Bothrops asper: Evidence of rapid plasma membrane damage and a dual role for extracellular calcium.<br>Toxicology in Vitro, 2007, 21, 1382-1389. | 2.4                           | 47          |
| 110 | Factors associated with adverse reactions induced by caprylic acid-fractionated whole IgG preparations: comparison between horse, sheep and camel IgGs. Toxicon, 2005, 46, 775-781.                                                                    | 1.6                           | 46          |
| 111 | Production and partial characterization of monoclonal antibodies to Bothrops asper (terciopelo)<br>myotoxin. Toxicon, 1988, 26, 675-689.                                                                                                               | 1.6                           | 45          |
| 112 | Tyr→Trp-substituted peptide 115-129 of a Lys49 phospholipase A2 expresses enhanced membrane-damaging<br>activities and reproduces its in vivo myotoxic effect. Biochimica Et Biophysica Acta - Biomembranes,<br>1999, 1461, 19-26.                     | 2.6                           | 45          |
| 113 | Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from<br>Didelphis marsupialis serum. FEBS Journal, 2002, 269, 6052-6062.                                                                                       | 0.2                           | 45          |
| 114 | Structural and functional characterization of myotoxin I, a Lys49 phospholipase A2 homologue from the venom of the snake Bothrops atrox. Toxicon, 2004, 44, 91-101.                                                                                    | 1.6                           | 45          |
| 115 | Effects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of<br>Envenomation. PLoS Neglected Tropical Diseases, 2008, 2, e318.                                                                                         | 3.0                           | 45          |
| 116 | An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom.<br>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 161, 341-347.                                                     | 1.6                           | 45          |
| 117 | Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from<br>Colombia: Proteome, toxicity, and cross-neutralization by antivenom. Journal of Proteomics, 2016, 136,<br>262-273.                                  | 2.4                           | 45          |
| 118 | Role of enzymatic activity in muscle damage and cytotoxicity induced by <i>Bothrops asper</i> Asp49<br>phospholipase A <sub>2</sub> myotoxins: are there additional effector mechanisms involved?. PeerJ,<br>2014, 2, e569.                            | 2.0                           | 45          |
| 119 | Hemostatic effects induced by Thalassophryne nattereri fish venom: a model of endothelium-mediated<br>blood flow impairment. Toxicon, 2002, 40, 1141-1147.                                                                                             | 1.6                           | 44          |
| 120 | Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA2 Dichotomy across Micrurus Venoms. Toxins, 2016, 8, 178.                                                                                  | 3.4                           | 44          |
| 121 | Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus) Tj ETQq1 1 0.78                                                                                                                                        | 84314 rgB <sup>-</sup><br>2.4 | T /Qyerlock |
| 122 | Immunoglobulin G and F(ab′)2 polyvalent antivenoms do not differ in their ability to neutralize<br>hemorrhage, edema and myonecrosis induced by Bothrops asper (terciopelo) snake venom. Toxicon,<br>1997, 35, 1627-1637.                              | 1.6                           | 43          |
| 123 | Comparative study of the cytolytic activity of snake venoms from African spitting cobras (Naja spp.,) Tj ETQq1 1                                                                                                                                       | 0.784314<br>1.6               | rgBT /Over  |
| 124 | Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I<br>metalloproteinase. Journal of Proteomics, 2013, 80, 250-267.                                                                                           | 2.4                           | 43          |
| 125 | Differential susceptibility of C2C12 myoblasts and myotubes to group II phospholipase A2 myotoxins from crotalid snake venoms. Cell Biochemistry and Function, 2005, 23, 307-313.                                                                      | 2.9                           | 42          |
| 126 | Muscle phospholipid hydrolysis by <i><scp>B</scp>othropsÂasper </i> <scp>A</scp> sp49 and<br><scp>L</scp> ys49 phospholipaseÂ <scp>A</scp> <sub>2</sub> myotoxins – distinct mechanisms of<br>action. FEBS Journal, 2013, 280, 3878-3886.              | 4.7                           | 42          |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Structural and functional properties of BaTX, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Bothrops alternatus. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 585-593.    | 2.4 | 41        |
| 128 | Mipartoxin-I, a novel three-finger toxin, is the major neurotoxic component in the venom of the redtail coral snake Micrurus mipartitus (Elapidae). Toxicon, 2012, 60, 851-863.                                          | 1.6 | 41        |
| 129 | A bright future for integrative venomics. Toxicon, 2015, 107, 159-162.                                                                                                                                                   | 1.6 | 41        |
| 130 | Neutralization of myotoxic phospholipases A2 from the venom of the snake Bothrops asper by monoclonal antibodies. Toxicon, 1992, 30, 239-245.                                                                            | 1.6 | 40        |
| 131 | Catalytically inactive phospholipase A2 homologue binds to vascular endothelial growth factor receptor-2 via a C-terminal loop region. Biochemical Journal, 2008, 411, 515-522.                                          | 3.7 | 40        |
| 132 | Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon, 2018, 148, 123-131.                                                                                  | 1.6 | 40        |
| 133 | Neutralization of myonecrosis, hemorrhage, and edema induced by Bothrops asper snake venom by homologous and heterologous pre-existing antibodies in mice. Toxicon, 1996, 34, 567-577.                                   | 1.6 | 39        |
| 134 | Tissue pathology induced by snake venoms: How to understand a complex pattern of alterations from a systems biology perspective?. Toxicon, 2010, 55, 166-170.                                                            | 1.6 | 39        |
| 135 | Two color morphs of the pelagic yellow-bellied sea snake, Pelamis platura, from different locations of Costa Rica: Snake venomics, toxicity, and neutralization by antivenom. Journal of Proteomics, 2014, 103, 137-152. | 2.4 | 39        |
| 136 | Purification and characterization of myotoxin IV, a phospholipase A2 variant, fromBothrops asper snake venom. Natural Toxins, 1995, 3, 26-31.                                                                            | 1.0 | 38        |
| 137 | Inhibition of the myotoxic activity of Bothrops asper myotoxin II in mice by immunization with its synthetic 13-mer peptide 115–129. Toxicon, 1999, 37, 683-687.                                                         | 1.6 | 38        |
| 138 | Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake,<br>Aipysurus laevis. Toxicon, 2015, 107, 187-196.                                                                        | 1.6 | 38        |
| 139 | Cleavage of the NH2-Terminal Octapeptide of Bothrops asper Myotoxic Lysine-49 Phospholipase A2<br>Reduces Its Membrane-Destabilizing Effect. Archives of Biochemistry and Biophysics, 1994, 312, 336-339.                | 3.0 | 37        |
| 140 | Myotoxic and cytolytic activities of dimeric Lys49 phospholipase A2 homologues are reduced, but not abolished, by a pH-induced dissociation. Toxicon, 2005, 46, 291-296.                                                 | 1.6 | 37        |
| 141 | Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon, 2014, 90, 26-35.                           | 1.6 | 36        |
| 142 | Cell surface nucleolin interacts with and internalizes Bothrops asper Lys49 phospholipase A2 and mediates its toxic activity. Scientific Reports, 2018, 8, 10619.                                                        | 3.3 | 36        |
| 143 | Isolation and Characterization of a Myotoxic Phospholipase A2from the Venom of the Arboreal<br>SnakeBothriechis(Bothrops)schlegeliifrom Costa Rica. Archives of Biochemistry and Biophysics, 1997,<br>339, 260-266.      | 3.0 | 35        |
| 144 | Cytotoxicity of Lachesis muta muta snake (bushmaster) venom and its purified basic phospholipase A2<br>(LmTX-I) in cultured cells. Toxicon, 2007, 49, 678-692.                                                           | 1.6 | 35        |

| #   | Article                                                                                                                                                                                                                                           | IF               | CITATIONS    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 145 | SImilar effectiveness of fab and f(ab′)2 antivenoms in the neutralization of hemorrhagic activity of<br>Vipera berus snake venom in mice. Toxicon, 1996, 34, 1197-1202.                                                                           | 1.6              | 34           |
| 146 | Structural characterization and phylogenetic relationships of myotoxin II from Atropoides<br>(Bothrops) nummifer snake venom, a Lys49 phospholipase A2 homologue. International Journal of<br>Biochemistry and Cell Biology, 2002, 34, 1268-1278. | 2.8              | 34           |
| 147 | Proteomic and functional analyses of the venom of Porthidium lansbergii lansbergii (Lansberg's) Tj ETQq1 1 0.784                                                                                                                                  | 4314 rgBT<br>2.4 | /Qyerlock 10 |
| 148 | Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological<br>Cross-Neutralization, and Characterization of a Three-Finger Toxin. Toxins, 2016, 8, 138.                                                                 | 3.4              | 34           |
| 149 | New insights into the phylogeographic distribution of the 3FTx/PLA2 venom dichotomy across genus<br>Micrurus in South America. Journal of Proteomics, 2019, 200, 90-101.                                                                          | 2.4              | 34           |
| 150 | Comparative study of the edema-forming activity of costa rican snake venoms and its neutralization by<br>a polyvalent antivenom. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology,<br>1986, 85, 171-175.                  | 0.2              | 33           |
| 151 | Isolation of a galactose-binding lectin from the venom of the snake Bothrops godmani (Godmann's pit) Tj ETQq1                                                                                                                                     | 1 0.78431<br>1.6 | L4.rgBT /Ove |
| 152 | Electrophoretic and immunochemical studies of Micrurus snake venoms. Toxicon, 1994, 32, 713-723.                                                                                                                                                  | 1.6              | 33           |
| 153 | The venom of Bothrops asper from Guatemala: toxic activities and neutralization by antivenoms.<br>Toxicon, 2001, 39, 401-405.                                                                                                                     | 1.6              | 33           |
| 154 | Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: Comparison of high- and low-molecular weight fractions. Toxicon, 2008, 51, 373-380.                                                                              | 1.6              | 33           |
| 155 | Why myotoxin-containing snake venoms possess powerful nucleotidases?. Biochemical and Biophysical Research Communications, 2013, 430, 1289-1293.                                                                                                  | 2.1              | 33           |
| 156 | High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density<br>peptide microarrays. Scientific Reports, 2016, 6, 36629.                                                                                       | 3.3              | 33           |
| 157 | Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins. PLoS<br>Neglected Tropical Diseases, 2012, 6, e1526.                                                                                                  | 3.0              | 32           |
| 158 | Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. Journal of Proteomics, 2014, 96, 159-172.                                           | 2.4              | 32           |
| 159 | Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico.<br>Toxins, 2018, 10, 35.                                                                                                                         | 3.4              | 32           |
| 160 | Critical Role of TLR2 and MyD88 for Functional Response of Macrophages to a Group IIA-Secreted Phospholipase A2 from Snake Venom. PLoS ONE, 2014, 9, e93741.                                                                                      | 2.5              | 32           |
| 161 | Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A <sub>2</sub> from the Central American coral snake, <i>Micrurus nigrocinctus</i> .<br>PeerJ, 2017, 5, e2924.                       | 2.0              | 32           |
| 162 | Edema-forming activity of bushmaster (Lachesis muta stenophrys) and Central American rattlesnake<br>(Crotalus durissus durissus) venoms and neutralization by a polyvalent antivenom. Toxicon, 1985, 23,<br>173-176.                              | 1.6              | 31           |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Isolation and characterization of myotoxin II from Atropoides (Bothrops) nummifer snake venom, a<br>new Lys49 phospholipase A2 homologue. International Journal of Biochemistry and Cell Biology, 2000,<br>32, 63-71. | 2.8 | 31        |
| 164 | Snake venomics and toxicological profiling of the arboreal pitviper Bothriechis supraciliaris from Costa Rica. Toxicon, 2012, 59, 592-599.                                                                            | 1.6 | 31        |
| 165 | Phospholipase A2 enhances the endothelial cell detachment effect of a snake venom<br>metalloproteinase in the absence of catalysis. Chemico-Biological Interactions, 2015, 240, 30-36.                                | 4.0 | 31        |
| 166 | p-Bromophenacyl bromide modification of Bothrops asper myotoxin II, a lysine-49 phospholipase A2, affects its pharmacological activities. Toxicon, 1993, 31, 1202-1206.                                               | 1.6 | 30        |
| 167 | Lemnitoxin, the major component of Micrurus lemniscatus coral snake venom, is a myotoxic and pro-inflammatory phospholipase A2. Toxicology Letters, 2016, 257, 60-71.                                                 | 0.8 | 30        |
| 168 | Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between<br>Phospholipases A2 and Cytotoxins. Frontiers in Pharmacology, 2020, 11, 611.                                                  | 3.5 | 29        |
| 169 | An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies. Journal of Immunological Methods, 1993, 161, 231-237.                                   | 1.4 | 28        |
| 170 | Pharmacokinetics of whole IgG equine antivenom: Comparison between normal and envenomed rabbits. Toxicon, 2006, 48, 255-263.                                                                                          | 1.6 | 28        |
| 171 | The C-terminal region of a Lys49 myotoxin mediates Ca2+ influx in C2C12 myotubes. Toxicon, 2010, 55, 590-596.                                                                                                         | 1.6 | 28        |
| 172 | Development of Nanobodies Against Hemorrhagic and Myotoxic Components of Bothrops atrox Snake<br>Venom. Frontiers in Immunology, 2020, 11, 655.                                                                       | 4.8 | 28        |
| 173 | Antibody neutralization of a myotoxin from the venom of Bothrops asper (terciopelo). Toxicon, 1987, 25, 443-449.                                                                                                      | 1.6 | 27        |
| 174 | Anticomplementary activity of equine whole IgG antivenoms: comparison of three fractionation protocols. Toxicon, 2005, 45, 123-128.                                                                                   | 1.6 | 27        |
| 175 | An electrophoretic study on phospholipase A2 isoenzymes in the venoms of Central American crotaline snakes. Toxicon, 1992, 30, 815-823.                                                                               | 1.6 | 26        |
| 176 | Individual expression patterns of myotoxin isoforms in the venom of the snake Bothrops asper.<br>Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 325-329.                        | 0.2 | 26        |
| 177 | Protein-species quantitative venomics: looking through a crystal ball. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 27.                                                              | 1.4 | 26        |
| 178 | Detection of proteins antigenically related to Bothrops asper myotoxin in crotaline snake venoms.<br>Toxicon, 1987, 25, 947-955.                                                                                      | 1.6 | 25        |
| 179 | Effect of storage temperature on the stability of the liquid polyvalent antivenom produced in Costa<br>Rica. Toxicon, 1990, 28, 101-105.                                                                              | 1.6 | 25        |
| 180 | Quantitation by enzyme-immunoassay of antibodies against bothrops myotoxins in four commercially-available antivenoms. Toxicon, 1991, 29, 695-702.                                                                    | 1.6 | 25        |

| #   | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Characterization of a basic phospholipase A2-homologue myotoxin isolated from the venom of the snake Bothrops neuwiedii (yararA; chica) from Argentina. Toxicon, 1999, 37, 1735-1746.                                                                                                 | 1.6 | 25        |
| 182 | Phospholipases a2 from Viperidae snakes: Differences in membranotropic activity between<br>enzymatically active toxin and its inactive isoforms. Biochimica Et Biophysica Acta - Biomembranes,<br>2015, 1848, 463-468.                                                                | 2.6 | 24        |
| 183 | Divergent functional profiles of acidic and basic phospholipases A2 in the venom of the snake<br>Porthidium lansbergii lansbergii. Toxicon, 2016, 119, 289-298.                                                                                                                       | 1.6 | 24        |
| 184 | Novel Snakebite Therapeutics Must Be Tested in Appropriate Rescue Models to Robustly Assess Their<br>Preclinical Efficacy. Toxins, 2020, 12, 528.                                                                                                                                     | 3.4 | 24        |
| 185 | Histopathological and biochemical alterations induced by intramuscular injection of Bothrops asper (terciopelo) venom in mice. Toxicon, 1989, 27, 1085-1093.                                                                                                                          | 1.6 | 23        |
| 186 | Human heterophilic antibodies against equine immunoglobulins: assessment of their role in the early<br>adverse reactions to antivenom administration. Transactions of the Royal Society of Tropical<br>Medicine and Hygiene, 2008, 102, 1115-1119.                                    | 1.8 | 23        |
| 187 | First crotoxin-like phospholipase A2 complex from a New World non-rattlesnake species:<br>Nigroviriditoxin, from the arboreal Neotropical snake Bothriechis nigroviridis. Toxicon, 2015, 93,<br>144-154.                                                                              | 1.6 | 23        |
| 188 | Biological and Structural Characterization of Crotoxin and New Isoform of Crotoxin B PLA2 (F6a)<br>from Crotalus durissus collilineatus Snake Venom. Protein Journal, 2007, 26, 221-230.                                                                                              | 1.6 | 22        |
| 189 | Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia. Toxicon, 2014, 90, 15-25.                                                                                                                                | 1.6 | 22        |
| 190 | Proteomic and toxinological characterization of the venom of the South African Ringhals cobra<br>Hemachatus haemachatus. Journal of Proteomics, 2018, 181, 104-117.                                                                                                                   | 2.4 | 22        |
| 191 | <i>In vitro</i> discovery of a human monoclonal antibody that neutralizes lethality of cobra snake venom. MAbs, 2022, 14, .                                                                                                                                                           | 5.2 | 22        |
| 192 | Equine antibodies to Bothrops asper myotoxin II: isolation from polyvalent antivenom and neutralizing ability. Toxicon, 1990, 28, 379-384.                                                                                                                                            | 1.6 | 21        |
| 193 | Understanding structural and functional aspects of PII snake venom metalloproteinases:<br>Characterization of BlatH1, a hemorrhagic dimeric enzyme from the venom of Bothriechis lateralis.<br>Biochimie, 2014, 101, 145-155.                                                         | 2.6 | 21        |
| 194 | Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon: X, 2021, 9-10, 100070.                                                                                            | 2.9 | 21        |
| 195 | Immunochemical characterization of Micrurus nigrocinctus nigrocinctus venom with monoclonal and polyclonal antibodies. Toxicon, 1994, 32, 695-712.                                                                                                                                    | 1.6 | 20        |
| 196 | Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which<br>selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation,<br>molecular cloning and biological properties. Biochemical Journal, 2000, 346, 631. | 3.7 | 20        |
| 197 | Immunochemical properties of the N-terminal helix of myotoxin II, a lysine-49 phospholipase A2 from Bothrops asper snake venom. Toxicon, 2001, 39, 879-887.                                                                                                                           | 1.6 | 20        |
| 198 | A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling. Cell Death and Disease, 2012, 3, e343-e343.                                                                                                      | 6.3 | 20        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                              | IF               | CITATIONS         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 199 | Preclinical assessment of a polyspecific antivenom against the venoms of Cerrophidion sasai,<br>Porthidium nasutum and Porthidium ophryomegas: Insights from combined antivenomics and<br>neutralization assays. Toxicon, 2013, 64, 60-69.                                                                                                                                                                                           | 1.6              | 20                |
| 200 | An Asp49 Phospholipase A <sub>2</sub> from Snake Venom Induces Cyclooxygenase-2 Expression and<br>Prostaglandin E <sub>2</sub> Production via Activation of NF- <i>κ</i> B, p38MAPK, and PKC in<br>Macrophages. Mediators of Inflammation, 2014, 2014, 1-10.                                                                                                                                                                         | 3.0              | 20                |
| 201 | Comparative characterization of Viperidae snake venoms from Perú reveals two compositional patterns of phospholipase A2 expression. Toxicon: X, 2020, 7, 100044.                                                                                                                                                                                                                                                                     | 2.9              | 20                |
| 202 | The synthetic varespladib molecule is a multi-functional inhibitor for PLA2 and PLA2-like ophidic toxins. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129913.                                                                                                                                                                                                                                                      | 2.4              | 20                |
| 203 | Amino acid sequence and biological characterization of BlatPLA2, a non-toxic acidic phospholipase A2 from the venom of the arboreal snake Bothriechis lateralis from Costa Rica. Toxicon, 2013, 73, 71-80.                                                                                                                                                                                                                           | 1.6              | 19                |
| 204 | A Lys49 Phospholipase <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"&gt;<mml:mrow><mml:msub><mml:mtext>A</mml:mtext><mml:mtext>2</mml:mtext>Isolated from<i>Bothrops asper</i>Snake Venom, Induces Lipid Droplet Formation in Macrophages<br/>Which Depends on Distinct Signaling Pathways and the C-Terminal Region. BioMed Research<br/>International, 2013, 2013, 1-14.</mml:msub></mml:mrow></mml:math> | nl:mrow><<br>1.9 | :/mml:math><br>19 |
| 205 | Geographical variability of the venoms of four populations of Bothrops asper from Panama:<br>Toxicological analysis and neutralization by a polyvalent antivenom. Toxicon, 2017, 132, 55-61.                                                                                                                                                                                                                                         | 1.6              | 19                |
| 206 | Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake,<br>Micrurus fulvius : Functional profiles of hemolytic and non-hemolytic isoforms. Toxicology Letters,<br>2018, 286, 39-47.                                                                                                                                                                                                         | 0.8              | 19                |
| 207 | Venom variation in Bothrops asper lineages from North-Western South America. Journal of<br>Proteomics, 2020, 229, 103945.                                                                                                                                                                                                                                                                                                            | 2.4              | 19                |
| 208 | Primary structures and partial toxicological characterization of two phospholipases A2 from<br>Micrurus mipartitus and Micrurus dumerilii coral snake venoms. Biochimie, 2017, 137, 88-98.                                                                                                                                                                                                                                           | 2.6              | 18                |
| 209 | Crystal structure of a phospholipase A2 from Bothrops asper venom: Insights into a new putative<br>"myotoxic cluster― Biochimie, 2017, 133, 95-102.                                                                                                                                                                                                                                                                                  | 2.6              | 18                |
| 210 | Isolation of two basic phospholipases A2 from Bothrops diporus snake venom: Comparative characterization and synergism between Asp49 and Lys49 variants. Toxicon, 2019, 168, 113-121.                                                                                                                                                                                                                                                | 1.6              | 18                |
| 211 | A Secreted Phospholipase A2 Induces Formation of Smooth Muscle Foam Cells Which<br>Transdifferentiate to Macrophage-Like State. Molecules, 2019, 24, 3244.                                                                                                                                                                                                                                                                           | 3.8              | 18                |
| 212 | Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging<br>from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Tropica,<br>2020, 204, 105346.                                                                                                                                                                                                          | 2.0              | 18                |
| 213 | Mortality due to Hymenoptera stings in Costa Rica, 1985-2006. Revista Panamericana De Salud<br>Publica/Pan American Journal of Public Health, 2009, 25, 389-393.                                                                                                                                                                                                                                                                     | 1.1              | 18                |
| 214 | Isolation from a polyvalent antivenom of antibodies to a myotoxin in Bothrops asper snake venom.<br>Toxicon, 1985, 23, 807-813.                                                                                                                                                                                                                                                                                                      | 1.6              | 17                |
| 215 | Development of immunoassays for determination of circulating venom antigens during envenomations by coral snakes (Micrurus species). Toxicon, 1997, 35, 1605-1616.                                                                                                                                                                                                                                                                   | 1.6              | 17                |
| 216 | A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways in macrophages. European Journal of Pharmacology, 2013, 708, 68-79.                                                                                                                                                                                  | 3.5              | 17                |

| #   | Article                                                                                                                                                                                                                                        | lF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie, 2014, 107, 376-384.                               | 2.6 | 17        |
| 218 | Potent virucidal activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper. Biologicals, 2020, 63, 48-52.                                                                                        | 1.4 | 17        |
| 219 | Antivenomics and in vivo preclinical efficacy of six Latin American antivenoms towards<br>south-western Colombian Bothrops asper lineage venoms. PLoS Neglected Tropical Diseases, 2021, 15,<br>e0009073.                                      | 3.0 | 17        |
| 220 | Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 2017, 11, e0005768.                                                   | 3.0 | 17        |
| 221 | In vivo treatment with varespladib, a phospholipase A2 inhibitor, prevents the peripheral neurotoxicity<br>and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicology<br>Letters, 2022, 356, 54-63.         | 0.8 | 17        |
| 222 | A phospholipase A2 from Bothrops asper snake venom activates neutrophils in culture: Expression of cyclooxygenase-2 and PGE2 biosynthesis. Toxicon, 2011, 57, 288-296.                                                                         | 1.6 | 16        |
| 223 | Identification of linear B-cell epitopes on myotoxin II, a Lys49 phospholipase A2 homologue from<br>Bothrops asper snake venom. Toxicon, 2012, 60, 782-790.                                                                                    | 1.6 | 16        |
| 224 | Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon, 2019, 171, 7-19.                                                      | 1.6 | 16        |
| 225 | MipLAAO, a new L-amino acid oxidase from the redtail coral snake <i>Micrurus mipartitus</i> . PeerJ, 2018, 6, e4924.                                                                                                                           | 2.0 | 16        |
| 226 | First look into the venom of Roatan Island's critically endangered coral snake Micrurus ruatanus:<br>Proteomic characterization, toxicity, immunorecognition and neutralization by an antivenom. Journal<br>of Proteomics, 2019, 198, 177-185. | 2.4 | 15        |
| 227 | Immunohistochemical demonstration of the binding of Bothrops asper myotoxin to skeletal muscle sarcolemma. Toxicon, 1987, 25, 574-577.                                                                                                         | 1.6 | 14        |
| 228 | Effect of various Viperidae and Crotalidae snake venoms on endothelial cells in vitro. Toxicon, 1994,<br>32, 1689-1695.                                                                                                                        | 1.6 | 14        |
| 229 | Pitfalls to avoid when using phage display for snake toxins. Toxicon, 2017, 126, 79-89.                                                                                                                                                        | 1.6 | 14        |
| 230 | Snake venomics of <i>Bothrops punctatus</i> , a semiarboreal pitviper species from Antioquia,<br>Colombia. PeerJ, 2014, 2, e246.                                                                                                               | 2.0 | 14        |
| 231 | Comparison of venom composition and biological activities of the subspecies Crotalus lepidus<br>lepidus, Crotalus lepidus klauberi and Crotalus lepidus morulus from Mexico. Toxicon, 2013, 71, 84-95.                                         | 1.6 | 13        |
| 232 | Characterization of a novel snake venom component: Kazal-type inhibitor-like protein from the arboreal pitviper Bothriechis schlegelii. Biochimie, 2016, 125, 83-90.                                                                           | 2.6 | 13        |
| 233 | Enzymatic labelling of snake venom phospholipase A2 toxins. Toxicon, 2019, 170, 99-107.                                                                                                                                                        | 1.6 | 13        |
| 234 | A Representative GIIA Phospholipase A2 Activates Preadipocytes to Produce Inflammatory Mediators<br>Implicated in Obesity Development. Biomolecules, 2020, 10, 1593.                                                                           | 4.0 | 13        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Snake venomics, experimental toxic activities and clinical characteristics of human envenomation by<br>Bothrocophias myersi (Serpentes: Viperidae) from Colombia. Journal of Proteomics, 2020, 220, 103758.                                                                                                                                                                | 2.4 | 13        |
| 236 | Neutralization of local effects of the terciopelo (Bothrops asper) venom by blood serum of the colubrid snake Clelia clelia. Toxicon, 1982, 20, 571-579.                                                                                                                                                                                                                   | 1.6 | 12        |
| 237 | High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 2017, 138, 151-158.                                                                                                                                                                                                                  | 1.6 | 12        |
| 238 | A myotoxic Lys49 phospholipase A2-homologue is the major component of the venom of Bothrops cotiara from Misiones, Argentina. Toxicon, 2018, 148, 143-148.                                                                                                                                                                                                                 | 1.6 | 12        |
| 239 | Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii<br>(Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models.<br>Journal of Proteomics, 2020, 225, 103882.                                                                                                                                 | 2.4 | 12        |
| 240 | Danger in the Canopy. Comparative Proteomics and Bioactivities of the Venoms of the South American<br>Palm Pit Viper <i>Bothrops bilineatus</i> Subspecies <i>bilineatus</i> and <i>smaragdinus</i> and<br>Antivenomics of <i>B. b. bilineatus</i> (RondĂ´nia) Venom against the Brazilian Pentabothropic<br>Antivenom. Journal of Proteome Research, 2020, 19, 3518-3532. | 3.7 | 11        |
| 241 | Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni<br>browni: Identification of the first lethal multimeric neurotoxin in coral snake venom. Journal of<br>Proteomics, 2020, 225, 103863.                                                                                                                                         | 2.4 | 11        |
| 242 | Venomics of the Central American Lyre Snake Trimorphodon quadruplex (Colubridae: Smith, 1941) from<br>Costa Rica. Journal of Proteomics, 2020, 220, 103778.                                                                                                                                                                                                                | 2.4 | 11        |
| 243 | Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: Relationship to the neutralization of toxic and enzymatic activities. Journal of Venom Research, 2010, 1, 8-17.                                                                                                                                                                                  | 0.6 | 11        |
| 244 | Solving the microheterogeneity of Bothrops asper myotoxin-II by high-resolution mass spectrometry:<br>Insights into C-terminal region variability in Lys49-phospholipase A2 homologs. Toxicon, 2022, 210,<br>123-131.                                                                                                                                                      | 1.6 | 11        |
| 245 | Structure of myotoxin II, a catalytically inactive Lys49 phospholipase A2homologue fromAtropoides nummifervenom. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 423-426.                                                                                                                                                                   | 0.7 | 10        |
| 246 | Membrane cholesterol modulates the cytolytic mechanism of myotoxin II, a Lys49 phospholipase<br>A <sub>2</sub> homologue from the venom of <i>Bothrops asper</i> . Cell Biochemistry and Function,<br>2011, 29, 365-370.                                                                                                                                                   | 2.9 | 10        |
| 247 | Homogenates of skeletal muscle injected with snake venom inhibit myogenic differentiation in cell culture. Muscle and Nerve, 2013, 47, 202-212.                                                                                                                                                                                                                            | 2.2 | 10        |
| 248 | Physicochemical characterization of jicaro seeds (Crescentia alata H.B.K.): A novel protein and oleaginous seed. Journal of Food Composition and Analysis, 2017, 56, 84-92.                                                                                                                                                                                                | 3.9 | 10        |
| 249 | Proteomic profiling, functional characterization, and immunoneutralization of the venom of Porthidium porrasi, a pitviper endemic to Costa Rica. Acta Tropica, 2019, 193, 113-123.                                                                                                                                                                                         | 2.0 | 10        |
| 250 | Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin. Journal of Proteomics, 2019, 192, 196-207.                                                                                                                                                       | 2.4 | 10        |
| 251 | 12-HETE is a regulator of PGE2 production via COX-2 expression induced by a snake venom group IIA phospholipase A2 in isolated peritoneal macrophages. Chemico-Biological Interactions, 2020, 317, 108903.                                                                                                                                                                 | 4.0 | 10        |
| 252 | A Lipidomic Perspective of the Action of Group IIA Secreted Phospholipase A2 on Human Monocytes:<br>Lipid Droplet Biogenesis and Activation of Cytosolic Phospholipase A21±. Biomolecules, 2020, 10, 891.                                                                                                                                                                  | 4.0 | 10        |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Ontogenetic changes in the venom of Metlapilcoatlus nummifer, the mexican jumping viper. Toxicon, 2020, 184, 204-214.                                                                                                                                                         | 1.6 | 10        |
| 254 | An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity. PLoS Neglected Tropical Diseases, 2020, 14, e0008366.                                                                            | 3.0 | 10        |
| 255 | Cytotoxicity of snake venom Lys49 PLA2-like myotoxin on rat cardiomyocytes ex vivo does not involve a direct action on the contractile apparatus. Scientific Reports, 2021, 11, 19452.                                                                                        | 3.3 | 10        |
| 256 | Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and<br>Identification of Immunogenic Components within Their Protein Cargo. Biology, 2022, 11, 983.                                                                            | 2.8 | 10        |
| 257 | Effects of a myotoxic phospholipase A2 isolated from Bothrops asper venom on skeletal muscle sarcoplasmic reticulum. Toxicon, 1987, 25, 1244-1248.                                                                                                                            | 1.6 | 9         |
| 258 | Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms:<br>Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon, 2019, 170, 85-93.                                                                            | 1.6 | 9         |
| 259 | Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi<br>Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comparative Biochemistry and<br>Physiology Part - C: Toxicology and Pharmacology, 2019, 217, 54-67. | 2.6 | 9         |
| 260 | Isolation of bothrasperin, a disintegrin with potent platelet aggregation inhibitory activity, from the venom of the snake Bothrops asper. Revista De Biologia Tropical, 2003, 51, 253-9.                                                                                     | 0.4 | 9         |
| 261 | Anti-human erythrocyte antibodies in horse-derived antivenoms used in the treatment of snakebite envenomations. Biologicals, 2007, 35, 5-11.                                                                                                                                  | 1.4 | 8         |
| 262 | Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif. Toxins, 2016, 8, 292.                                                                                                                  | 3.4 | 8         |
| 263 | N-terminal domain of Bothrops asper Myotoxin II Enhances the Activity of Endothelin Converting<br>Enzyme-1 and Neprilysin. Scientific Reports, 2016, 6, 22413.                                                                                                                | 3.3 | 8         |
| 264 | N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by<br>Mouse Neutrophils. Infection and Immunity, 2016, 84, 1712-1721.                                                                                                              | 2.2 | 8         |
| 265 | Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A2: activation of endogenous phospholipases contributes to the pronociceptive effect. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 18.                       | 1.4 | 8         |
| 266 | A novel pentameric phospholipase A2 myotoxin (PophPLA2) from the venom of the pit viper Porthidium ophryomegas. International Journal of Biological Macromolecules, 2018, 118, 1-8.                                                                                           | 7.5 | 8         |
| 267 | Phospholipase A2 and inflammation. Trends in Molecular Medicine, 1995, 1, 9.                                                                                                                                                                                                  | 2.6 | 7         |
| 268 | Lys-49-phospholipases A2 as active enzyme for β-arachidonoyl phospholipid bilayer membranes. IUBMB<br>Life, 1997, 43, 19-26.                                                                                                                                                  | 3.4 | 7         |
| 269 | Computational Biology in Costa Rica: The Role of a Small Country in the Global Context of Bioinformatics. PLoS Computational Biology, 2008, 4, e1000040.                                                                                                                      | 3.2 | 7         |
| 270 | Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach. Journal of Proteomics, 2017, 151, 204-213.                                                                                                                            | 2.4 | 7         |

| #   | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Editorial: Novel Immunotherapies Against Envenomings by Snakes and Other Venomous Animals.<br>Frontiers in Immunology, 2020, 11, 1004.                                                                                                                                                                                                         | 4.8 | 7         |
| 272 | Cardiac effect induced by Crotalus durissus cascavella venom: Morphofunctional evidence and mechanism of action. Toxicology Letters, 2021, 337, 121-133.                                                                                                                                                                                       | 0.8 | 7         |
| 273 | Localization of Myotoxin I and Myotoxin II from the venom of Bothrops asper in a murine model.<br>Toxicon, 2021, 197, 48-54.                                                                                                                                                                                                                   | 1.6 | 7         |
| 274 | Effect of calcineurin inhibitors on myotoxic activity of crotoxin and Bothrops asper phospholipase<br>A2 myotoxins in vivo and in vitro. Comparative Biochemistry and Physiology Part - C: Toxicology and<br>Pharmacology, 2006, 143, 284-294.                                                                                                 | 2.6 | 6         |
| 275 | Novel preconcentration technique using bis(2-ethylhexyl) hydrogen phosphate (HDEHP) loaded porous polytetrafluoroethylene (PTFE) filter tube as a sorbent: Its application to determination of In(III) in seawater by ICP-MS with air segmented discrete sample introduction. Analytica Chimica Acta, 2006, 556, 423-429.                      | 5.4 | 6         |
| 276 | Resurrexit, sicut dixit, alleluia. Snake venomics from a 26-year old polyacrylamide focusing gel.<br>Journal of Proteomics, 2012, 75, 1074-1078.                                                                                                                                                                                               | 2.4 | 6         |
| 277 | Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles). Toxicon, 2017, 137, 158-167.                                                                                                                           | 1.6 | 6         |
| 278 | A Snake Venom-Secreted Phospholipase A <sub>2</sub> Induces Foam Cell Formation Depending on the Activation of Factors Involved in Lipid Homeostasis. Mediators of Inflammation, 2018, 2018, 1-13.                                                                                                                                             | 3.0 | 6         |
| 279 | Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom. Toxicon: X, 2022, 13, 100097.                                                                                                                                                                                                     | 2.9 | 6         |
| 280 | Partial efficacy of a Brazilian coralsnake antivenom and varespladib in neutralizing distinct toxic<br>effects induced by sublethal Micrurus dumerilii carinicauda envenoming in rats. Toxicon, 2022, 213,<br>99-104.                                                                                                                          | 1.6 | 6         |
| 281 | Venom of the crotaline snake Atropoides nummifer (jumping viper) from Guatemala and Honduras:<br>comparative toxicological characterization, isolation of a myotoxic phospholipase A2 homologue and<br>neutralization by two antivenoms. Comparative Biochemistry and Physiology Part - C: Toxicology and<br>Pharmacology, 2001, 129, 151-162. | 2.6 | 5         |
| 282 | A constant area monolayer method to assess optimal lipid packing for lipolysis tested with several secreted phospholipase A2. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2216-2224.                                                                                                                                             | 2.6 | 5         |
| 283 | Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone<br>Anthopleura nigrescens. Biochimie, 2019, 156, 206-223.                                                                                                                                                                                   | 2.6 | 5         |
| 284 | Immunological cross-recognition and neutralization studies of Micrurus mipartitus and Micrurus dumerilii venoms by two therapeutic equine antivenoms. Biologicals, 2020, 68, 40-45.                                                                                                                                                            | 1.4 | 5         |
| 285 | Proteogenomic analysis of the Clostridium difficile exoproteome reveals a correlation between phylogenetic distribution and virulence potential. Anaerobe, 2020, 62, 102151.                                                                                                                                                                   | 2.1 | 5         |
| 286 | Snake Venom Phospholipase A2 Toxins. , 2021, , 389-412.                                                                                                                                                                                                                                                                                        |     | 5         |
| 287 | Effect of a recombinant Lys49PLA2 myotoxin and Lys49PLA2-derived synthetic peptides from Agkistrodon species on membrane permeability to water. Toxicon, 2004, 44, 157-159.                                                                                                                                                                    | 1.6 | 4         |
| 288 | Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898<br>(Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Neglected Tropical Diseases, 2020, 14,<br>e0008899.                                                                                                                             | 3.0 | 4         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Crystallization of the Lys49 PLA2 homologue, myotoxin II, from the venom of Atropoides nummifer.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1703, 87-89.                                         | 2.3 | 3         |
| 290 | The earless monitor lizard Lanthanotus borneensis – A venomous animal?. Toxicon, 2021, 189, 73-78.                                                                                                                      | 1.6 | 3         |
| 291 | What's in a mass?. Biochemical Society Transactions, 2021, 49, 1027-1037.                                                                                                                                               | 3.4 | 3         |
| 292 | <i>In Vivo</i> Neutralization of Myotoxin II, a Phospholipase A <sub>2</sub> Homologue from<br><i>Bothrops asper</i> Venom, Using Peptides Discovered via Phage Display Technology. ACS Omega,<br>2022, 7, 15561-15569. | 3.5 | 3         |
| 293 | Antibodies to <i>Helicobacter pylori</i> in dyspeptic patients, asymptomatic adults, and children from Costa Rica. Apmis, 1995, 103, 428-432.                                                                           | 2.0 | 2         |
| 294 | Serum Antibody Response to Polysaccharides in Children with Recurrent Respiratory Tract Infections.<br>Vaccine Journal, 2001, 8, 1012-1014.                                                                             | 2.6 | 2         |
| 295 | Depletion of Complement Enhances the Clearance of Brucella abortus in Mice. Infection and Immunity, 2018, 86, .                                                                                                         | 2.2 | 2         |
| 296 | Three-finger toxins from the venom of Micrurus tschudii tschudii (desert coral snake): Isolation and characterization of tschuditoxin-I. Toxicon, 2019, 167, 144-151.                                                   | 1.6 | 2         |
| 297 | Lys49 myotoxins: Emerging insights into their modes of action. Toxicon, 2020, 177, S5.                                                                                                                                  | 1.6 | 2         |
| 298 | Venomics of the poorly studied hognosed pitvipers Porthidium arcosae and Porthidium volcanicum.<br>Journal of Proteomics, 2021, 249, 104379.                                                                            | 2.4 | 2         |
| 299 | Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II<br>From Bothrops asper Venom. Frontiers in Molecular Biosciences, 2021, 8, 787368.                                    | 3.5 | 2         |
| 300 | Dissociation of enzymatic and toxic activities by the use of antibodies. Toxicon, 1990, 28, 1245-1246.                                                                                                                  | 1.6 | 1         |
| 301 | Comparative analysis of membranotropic properties of various phospholipases A2 from venom of snakes of the family viperidae. Doklady Biochemistry and Biophysics, 2014, 457, 125-127.                                   | 0.9 | 1         |
| 302 | 196. Synthetic Peptides from Viperid Phospholipase A2 Myotoxins: Small Structures with Diverse<br>Biomimetic Actions. Toxicon, 2012, 60, 196.                                                                           | 1.6 | 0         |
| 303 | 224. Snake Venomics of Crotalus tigris. Evolutionary Clues for Generating a Pan-Specific Antivenom<br>Against Crotalid Type II Venoms. Toxicon, 2012, 60, 210.                                                          | 1.6 | 0         |
| 304 | Aggregation behavior of sodium 3-(octyloxy)-4-nitrobenzoate in aqueous solution. New Journal of<br>Chemistry, 2018, 42, 19407-19414.                                                                                    | 2.8 | 0         |
| 305 | Modeling Protein-Protein Interactions: a structural insight of myotoxin-antimyotoxin complex based on cross-linking data, resolved by mass spectrometry. Toxicon, 2019, 168, S27.                                       | 1.6 | 0         |
| 306 | Harnessing phage display technology for discovery of human IgGs targeting clinically relevant toxins<br>from the venom of the Central American coral snake (Micrurus nigrocinctus). Toxicon, 2019, 158, S45.            | 1.6 | 0         |

| #   | Article                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Harnessing human monoclonal antibodies for neutralisation of dendrotoxins in a murine model.<br>Toxicon, 2019, 159, S14.                                            | 1.6 | 0         |
| 308 | Structural analysis of a myotoxin-antimyotoxin complex by cross-linking, mass spectrometry, and bioinformatics. Toxicon, 2019, 158, S29-S30.                        | 1.6 | 0         |
| 309 | Discovery of cross-reactive and recyclable human monoclonal antibodies for new recombinant antivenoms. Toxicon, 2020, 177, S38.                                     | 1.6 | 0         |
| 310 | Distinct effects of radicicol on myotoxic activity of crotoxin and Bothrops asper phospholipase A2 myotoxins in vivo and in vitro. FASEB Journal, 2011, 25, 1050.2. | 0.5 | 0         |