
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8337049/publications.pdf Version: 2024-02-01

Υσεμιμίρο Βλβλ

#	Article	IF	CITATIONS
1	Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation. Immunity, 2014, 41, 1040-1051.	14.3	450
2	Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nature Immunology, 2008, 9, 81-88.	14.5	312
3	Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16704-16709.	7.1	291
4	The Calcium Sensors STIM1 and STIM2 Control B Cell Regulatory Function through Interleukin-10 Production. Immunity, 2011, 34, 703-714.	14.3	235
5	Identification of the SH2 Domain Binding Protein of Bruton's Tyrosine Kinase as BLNK—Functional Significance of Btk-SH2 Domain in B-Cell Antigen Receptor-Coupled Calcium Signaling. Blood, 1999, 94, 2357-2364.	1.4	184
6	Modeling of Thin Wires in a Lossy Medium for FDTD Simulations. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 54-60.	2.2	145
7	Voltages Induced on an Overhead Wire by Lightning Strikes to a Nearby Tall Grounded Object. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 212-224.	2.2	125
8	On the transmission line model for lightning return stroke representation. Geophysical Research Letters, 2003, 30, .	4.0	104
9	On the use of lumped sources in lightning return stroke models. Journal of Geophysical Research, 2005, 110, .	3.3	102
10	Numerical electromagnetic field analysis of lightning current in tall structures. IEEE Transactions on Power Delivery, 2001, 16, 324-328.	4.3	96
11	Numerical electromagnetic field analysis of tower surge response. IEEE Transactions on Power Delivery, 1997, 12, 483-488.	4.3	86
12	On the Mechanism of Attenuation of Current Waves Propagating Along a Vertical Perfectly Conducting Wire Above Ground: Application to Lightning. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 521-532.	2.2	86
13	FDTD Simulation of a Horizontal Grounding Electrode and Modeling of its Equivalent Circuit. IEEE Transactions on Electromagnetic Compatibility, 2006, 48, 817-825.	2.2	82
14	Electromagnetic models of the lightning return stroke. Journal of Geophysical Research, 2007, 112, .	3.3	82
15	Lightning electromagnetic environment in the presence of a tall grounded strike object. Journal of Geophysical Research, 2005, 110, .	3.3	81
16	Application of the Partial Element Equivalent Circuit Method to Analysis of Transient Potential Rises in Grounding Systems. IEEE Transactions on Electromagnetic Compatibility, 2011, 53, 726-736.	2.2	77
17	STIM1 calcium sensor is required for activation of the phagocyte oxidase during inflammation and host defense. Blood, 2014, 123, 2238-2249.	1.4	76
18	Electromagnetic Fields at the Top of a Tall Building Associated With Nearby Lightning Return Strokes. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 632-643.	2.2	63

#	Article	IF	CITATIONS
19	On the Choice Between Transmission Line Equations and Full-Wave Maxwell's Equations for Transient Analysis of Buried Wires. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 347-357.	2.2	63
20	Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1506-1521.	2.2	63
21	An Improved Thin Wire Representation for FDTD Computations. IEEE Transactions on Antennas and Propagation, 2008, 56, 3248-3252.	5.1	59
22	Numerical electromagnetic analysis of lightning-induced voltage over ground of finite conductivity. IEEE Transactions on Electromagnetic Compatibility, 2003, 45, 651-656.	2.2	57
23	Applications of Electromagnetic Models of the Lightning Return Stroke. IEEE Transactions on Power Delivery, 2008, 23, 800-811.	4.3	55
24	On the Interpretation of Ground Reflections Observed in Small-Scale Experiments Simulating Lightning Strikes to Towers. IEEE Transactions on Electromagnetic Compatibility, 2005, 47, 533-542.	2.2	54
25	Characteristics of electromagnetic return-stroke models. IEEE Transactions on Electromagnetic Compatibility, 2003, 45, 129-135.	2.2	53
26	Physiological function and molecular basis of STIM1â€mediated calcium entry in immune cells. Immunological Reviews, 2009, 231, 174-188.	6.0	47
27	Numerical electromagnetic field analysis on measuring methods of tower surge impedance. IEEE Transactions on Power Delivery, 1999, 14, 630-635.	4.3	45
28	A Simplified Model of Corona Discharge on Overhead Wire for FDTD Computations. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 585-593.	2.2	44
29	Role of Calcium Signaling in B Cell Activation and Biology. Current Topics in Microbiology and Immunology, 2015, 393, 143-174.	1.1	44
30	Lightning strikes to tall objects: Currents inferred from far electromagnetic fields versus directly measured currents. Geophysical Research Letters, 2007, 34, .	4.0	41
31	Wave Propagation on an Overhead Multiconductor in a High-Frequency Region. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1638-1648.	2.2	41
32	Influence of strike object grounding on close lightning electric fields. Journal of Geophysical Research, 2008, 113, .	3.3	38
33	Electric and Magnetic Fields Predicted by Different Electromagnetic Models of the Lightning Return Stroke Versus Measured Fields. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 479-487.	2.2	37
34	Surf4 modulates STIM1-dependent calcium entry. Biochemical and Biophysical Research Communications, 2012, 422, 615-620.	2.1	37
35	Experimental and Analytical Studies on Lightning Surge Response of 500-kV Transmission Tower. IEEE Transactions on Power Delivery, 2009, 24, 2232-2239.	4.3	35
36	An Investigation of Earth-Return Impedance Between Overhead and Underground Conductors and Its Approximation. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 860-867.	2.2	35

#	Article	IF	CITATIONS
37	3-D FDTD Computation of Lightning-Induced Voltages on an Overhead Two-Wire Distribution Line. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 1161-1168.	2.2	32
38	Ca2+ signaling and STIM1. Progress in Biophysics and Molecular Biology, 2010, 103, 51-58.	2.9	30
39	FDTD Simulation of Lightning Surges on Overhead Wires in the Presence of Corona Discharge. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 1234-1243.	2.2	30
40	Numerical electromagnetic field analysis of archorn voltages during a back-flashover on a 500-kV twin-circuit line. IEEE Transactions on Power Delivery, 2003, 18, 207-213.	4.3	27
41	Lightning-Induced Voltage Over Lossy Ground by a Hybrid Electromagnetic Circuit Model Method With Cooray–Rubinstein Formula. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 975-985.	2.2	26
42	FDTD Simulation of Insulator Voltages at a Lightning-Struck Tower Considering Ground-Wire Corona. IEEE Transactions on Power Delivery, 2013, 28, 1635-1642.	4.3	26
43	Finiteâ€difference timeâ€domain simulation of partial discharges in a gas insulated switchgear. High Voltage, 2016, 1, 52-56.	4.7	26
44	Lightning surge characteristics on inclined incoming line to substation based on reduced-scale model experiment. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 739-746.	2.9	25
45	A Study on Basic Characteristics of the Proximity Effect on Conductors. IEEE Transactions on Power Delivery, 2017, 32, 1790-1799.	4.3	25
46	Transient Responses of Overhead Cables Due to Mode Transition in High Frequencies. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 785-794.	2.2	25
47	Reproduction of Lightning Electromagnetic Field Waveforms by Engineering Model of Return Stroke. IEEE Transactions on Electromagnetic Compatibility, 2004, 46, 130-133.	2.2	24
48	Application of a partial element equivalent circuit method to lightning surge analyses. Electric Power Systems Research, 2013, 94, 30-37.	3.6	24
49	Intrinsic Disorder Mediates Cooperative Signal Transduction in STIM1. Journal of Molecular Biology, 2014, 426, 2082-2097.	4.2	24
50	FDTD Computation of Lightning-Induced Voltages on Multiconductor Lines With Surge Arresters and Pole Transformers. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 442-447.	2.2	23
51	Representation of an Arbitrary-Radius Wire for FDTD Calculations in the 2-D Cylindrical Coordinate System. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 1014-1018.	2.2	21
52	Derivation of a semiconducting layer impedance and its effect on wave propagation characteristics on a cable. IET Generation, Transmission and Distribution, 2003, 150, 434.	1.1	20
53	FDTD Simulations of Corona Effect on Lightning-Induced Voltages. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 168-176.	2.2	20
54	FDTD surge analysis of grounding electrodes considering soil ionization. Electric Power Systems Research, 2014, 113, 171-179.	3.6	20

#	Article	IF	CITATIONS
55	Effect of Shield Wires on the Lightning-Induced Currents on Buried Cables. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 738-746.	2.2	20
56	On the Mechanism of Current Pulse Propagation Along Conical Structures: Application to Tall Towers Struck by Lightning. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 332-342.	2.2	19
57	Propagation Characteristics of Power Line Communication Signals Along a Power Cable Having Semiconducting Layers. IEEE Transactions on Electromagnetic Compatibility, 2010, 52, 756-769.	2.2	18
58	Influences of the Presence of a Tall Grounded Strike Object and an Upward Connecting Leader on Lightning Currents and Electromagnetic Fields. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 886-892.	2.2	17
59	Application of the TLM Method to Transient Simulations of a Conductor System With a Lossy Ground: Grounding Electrodes and an Overhead Wire. IEEE Transactions on Electromagnetic Compatibility, 2013, 55, 175-182.	2.2	17
60	Advanced computational methods in lightning performance. The Numerical Electromagnetics Code (NEC-2). , 0, , .		16
61	Circuit Model of Vertical Double-Circuit Transmission Tower and Line for Lightning Surge Analysis Considering TEM-mode Formation. IEEE Transactions on Power Delivery, 2020, 35, 2471-2480.	4.3	16
62	Lightning return-stroke model incorporating current distortion. IEEE Transactions on Electromagnetic Compatibility, 2002, 44, 476-478.	2.2	15
63	FDTD simulation considering an AC operating voltage for air-insulation substation in terms of lightning protective level. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 806-814.	2.9	15
64	Modification on a Thin-Wire Representation for FDTD Calculations in Nonsquare Grids. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 427-431.	2.2	14
65	FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8043-8051.	3.3	14
66	3-D FDTD Computation of Electromagnetic Fields Associated With Lightning Strikes to a Tower Climbed on a Trapezoidal Mountain. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 606-616.	2.2	14
67	Numerical electromagnetic analysis of transient induced voltages associated with lightning to tall structure. Journal of Electrostatics, 2004, 60, 141-147.	1.9	13
68	Simulation of corona at lightning-triggering wire: Current, charge transfer, and the field-reduction effect. Journal of Geophysical Research, 2011, 116, .	3.3	13
69	Transient Analysis of a Cable With Low-Conducting Layers by a Finite-Difference Time-Domain Method. IEEE Transactions on Electromagnetic Compatibility, 2004, 46, 488-493.	2.2	12
70	Computation of Lightning Electromagnetic Pulses With the Constrained Interpolation Profile Method in the 2-D Cylindrical Coordinate System. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1497-1505.	2.2	12
71	Lightning surge into a substation at a back-flashover and review of lightning protective level through the FDTD simulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1044-1052.	2.9	12
72	An Approximate Mathematical Expression for Nonlinear Resistive Properties of Metal Oxide Varistor Elements for FDTD Simulations. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2638-2642.	2.2	12

#	Article	IF	CITATIONS
73	Tower Models for Fast-Front Lightning Currents. IEEJ Transactions on Power and Energy, 2000, 120, 18-23.	0.2	11
74	FDTD Analysis of the Current Distribution within the Grounding System for a Wind Turbine Generation Tower Struck by Lightning. IEEJ Transactions on Power and Energy, 2008, 128, 1393-1400.	0.2	11
75	Lightning-Induced Voltages in the Presence of Nearby Buildings: FDTD Simulation Versus Small-Scale Experiment. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1601-1607.	2.2	11
76	FDTD Analysis of the Electric Field of a Substation Arrester Under a Lightning Overvoltage. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 615-618.	2.2	11
77	FDTD Modeling of LEMP Propagation in the Earthâ€lonosphere Waveguide With Emphasis on Realistic Representation of Lightning Source. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,918.	3.3	11
78	Lightning surge response of a double-circuit transmission tower with incoming lines to a substation through FDTD simulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 96-104.	2.9	11
79	FDTD simulation of direct lightning strike to a phase conductor: Influence of corona on transient voltages at the tower. Electric Power Systems Research, 2015, 123, 128-136.	3.6	10
80	FDTD Simulation of Lightning Current in a CFRP Panel: Comparison of the Use of Conductivity Matrix Approach With That of Triangular Prism Cells. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 1674-1677.	2.2	10
81	FDTD simulation of back-flashover at the transmission-line tower struck by lightning considering ground-wire corona and operating voltages. Electric Power Systems Research, 2018, 159, 17-23.	3.6	10
82	3â€D Finite Difference Time Domain Simulation of Lightning Strikes to the 634â€m Tokyo Skytree. Geophysical Research Letters, 2018, 45, 9267-9274.	4.0	10
83	Impedance and Admittance Formulas for a Multistair Model of Transmission Towers. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2491-2502.	2.2	10
84	Numerical Simulations of Lightning Surge Responses in a Seismic Isolated Building by FDTD and EMTP. IEEJ Transactions on Power and Energy, 2008, 128, 473-478.	0.2	9
85	Computation of Lightning Electromagnetic Pulses With the TLM Method in the 2-D Cylindrical Coordinate System. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 949-955.	2.2	9
86	An Improved Thin Wire Representation for FDTD Transient Simulations. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 484-487.	2.2	9
87	Influence of a Measuring System to a Transient Voltage on a Vertical Conductor. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 221-228.	1.4	8
88	FDTD Simulation of Lightning Current in a Multilayer CFRP Panel With Triangular Prism Cells. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 327-330.	2.2	8
89	FDTD Electromagnetic Analysis of a Wind Turbine Generator Tower Struck by Lightning. IEEJ Transactions on Power and Energy, 2009, 129, 1181-1186.	0.2	8
90	Numerical Electromagnetic Field Analysis of Unit Step Response Characteristics of Impulse Voltage Measuring Systems. IEEE Transactions on Power Delivery, 2004, 19, 21-27.	4.3	7

#	Article	IF	CITATIONS
91	Parametric Study on Unit Step Responses of Impulse Voltage Measuring Systems Based on FDTD Simulations. IEEE Transactions on Power Delivery, 2013, 28, 376-382.	4.3	7
92	Applications of the FDTD method to lightning electromagnetic pulse and surge simulations. , 2014, , .		7
93	Lightning surge response of a double-circuit transmission tower with incoming lines to a substation through FDTD simulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 96-104.	2.9	7
94	Computation of lightning electromagnetic pulses using the constrained interpolation profile method. Electric Power Systems Research, 2014, 115, 94-101.	3.6	7
95	Effective length of vertical grounding wires connected to wind turbine foundation. Journal of International Council on Electrical Engineering, 2017, 7, 89-95.	0.4	7
96	PEEC simulation of lightning over-voltage surge with corona discharges on the over head wires. Electric Power Systems Research, 2020, 180, 106118.	3.6	7
97	A Circuit Model for Lightning Surge of Wind Turbine Tower with an Internal Conductor. IEEJ Transactions on Power and Energy, 2015, 135, 200-206.	0.2	7
98	Present Understanding of the Lightning Return Stroke. , 2009, , 1-21.		6
99	å,°é,"é›·æ'fā®å·¥å¦āf¢āf‡āf«ã¤é›·é›»ç£ç•Œāf'āf«ã,¹è¨ç®—ãṣā®å¿œç"". IEEJ Transactions on Power and Energy,	2008, 12	8, 7 85-794.
100	Influence of a Voltage Reference Wire and a Current Lead Wire to a Transient Voltage on a Vertical Conductor. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 1-7.	1.4	6
101	Protective Effect of Shield Wires Against Direct Lightning Flashes to Buried Cables. IEEE Transactions on Power Delivery, 2018, 33, 1628-1635.	4.3	6
102	Effective Length of Counterpoises Connected to Wind Turbine Foundation. IEEE Transactions on Power Delivery, 2021, 36, 3956-3963.	4.3	6
103	Computation of Lightning Electromagnetic Pulses Using a Hybrid Constrained Interpolation Profile and Transmission Line Modeling Method. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1958-1966.	2.2	6
104	Lightning Surge Analysis of HV Transmission Line: Bias AC-Voltage Effect on Multiphase Back-Flashover. IEEE Transactions on Power Delivery, 2021, 36, 3570-3579.	4.3	6
105	High-Accuracy Analysis of Surges on a Slanting Conductor and a Cylindrical Conductor by an FDTD Method. IEEJ Transactions on Power and Energy, 2003, 123, 725-733.	0.2	6
106	An equivalent circuit of a transmission-line tower struck by lightning. , 2010, , .		5
107	Application of a partial element equivalent circuit method to lightning surge analyses. , 2011, , .		5
108	Application of the Type-C Constrained Interpolation Profile Method to Lightning Electromagnetic Field Analyses. IEEJ Transactions on Power and Energy, 2013, 133, 106-113.	0.2	5

#	Article	IF	CITATIONS
109	Representation of a Straight Thin Wire in a Lossy Medium and an Oblique Thin Wire in Air for FDTD Simulations. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 1164-1167.	2.2	5
110	High-frequency wave-propagation along overhead conductors by transmisson line approach and numerical electromagnetic analysis. Electric Power Systems Research, 2016, 136, 12-20.	3.6	5
111	Lightning Electromagnetic Field Calculation Using the Constrained Interpolation Profile Method With a Subgridding Technique. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 1682-1685.	2.2	5
112	Finite-Difference Time-Domain Simulation of a Lightning-Impulse-Applied ZnO Element. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 1780-1786.	2.2	5
113	Review of Recent Researches Related to Lightning to Tall Structures. IEEJ Transactions on Power and Energy, 2010, 130, 769-779.	0.2	5
114	Transmission line model of lightning return strokes generalized to include a tall grounded strike object and an upward connecting leader. , 2006, , .		4
115	Application of the partial element equivalent circuit method to tower surge response calculations. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6, 324-330.	1.4	4
116	FDTD computation of lightning surges on overhead wires in the presence of corona discharge. , 2011, ,		4
117	A circuit model of vertical conductor using Semlyen's line model based on transient response calculated by FDTD. Electric Power Systems Research, 2014, 113, 151-156.	3.6	4
118	Numerical Electromagnetic Field Analysis of High-Frequency Wave Propagation on an Overhead Conductor. IEEE Transactions on Electromagnetic Compatibility, 2015, 57, 587-590.	2.2	4
119	An FDTD Study of Errors in Magnetic Direction Finding of Lightning Due to the Presence of Conducting Structure Near the Field Measuring Station. Atmosphere, 2016, 7, 92.	2.3	4
120	A study of transient responses on nonuniform conductors by FDTD simulations. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11, 435-441.	1.4	4
121	Lightning Surge Response of a Transmission Tower with Overhead Lines Analyzed by TEM-delay Model. IEEJ Transactions on Power and Energy, 2021, 141, 145-153.	0.2	4
122	A frequency dependent circuit model of a wind turbine tower using transient response calculeted by FDTD. , 2012, , .		3
123	Protection Against Lightning-Induced Voltages: Transient Model for Points of Discontinuity on Multiconductor Overhead Line. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 1209-1218.	2.2	3
124	Simulation of the propagation of lightning electromagnetic pulses in the Earth–ionosphere waveguide using the fdtd method in the 2â€Ð spherical coordinate system. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 335-339.	1.4	3
125	Approximate Mathematical Expressions for Nonlinear Resistive Properties of Zinc Oxide Elements. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2338-2340.	2.2	3
126	On Possible Influence of Corona Discharge on the Propagation Speed of Lightning Surges Along a Tall Grounded Object. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 172-180.	2.2	3

#	Article	IF	CITATIONS
127	Electromagnetic and Thermal Analysis of a ZnO Element of Transmissionâ€Line Arrester for a Lightning Surge Current. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 810-812.	1.4	3
128	Circuit Model of an Overhead Transmission Line Considering the TEM â€Mode Formation Delay. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 888-895.	1.4	3
129	Application of the 3D TLM Method to Analyzing Lightning Electromagnetic Fields and Surges. IEEJ Transactions on Power and Energy, 2009, 129, 948-956.	0.2	3
130	Wave Propagation Characteristics on a Pipe-Type Cable in Particular Reference to the Proximity Effect. IEEJ Transactions on Power and Energy, 2013, 133, 954-960.	0.2	3
131	Numerical Analysis of Wave Propagation Characteristics on a Buried Horizontal Conductor by an FDTD Method. IEEJ Transactions on Power and Energy, 2003, 123, 1319-1327.	0.2	3
132	An Improvement of a Thin Wire Representation for FDTD Electromagnetic and Surge Calculations. IEEJ Transactions on Power and Energy, 2009, 129, 198-204.	0.2	3
133	Reproduction of Features of Electromagnetic Field Waveforms Associated with Lightning Return Stroke. IEEJ Transactions on Power and Energy, 2005, 125, 544-550.	0.2	2
134	Electromagnetic models of lightning. , 2008, , .		2
135	On the Equivalence of a Conducting Plate in a Laboratory Experiment to a Real Earth. IEEE Transactions on Electromagnetic Compatibility, 2010, 52, 691-698.	2.2	2
136	FDTD simulation of grounding electrodes considering soil ionization. , 2012, , .		2
137	Modeling of LEMP propagation in the lossy atmosphere. , 2018, , .		2
138	Soil ionization effects on surge characteristics of grounding electrodes. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 1609-1616.	1.4	2
139	Electromagnetic and thermal analysis of a multilayer CFRP panel struck by lightning with the FDTD method. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 157-158.	1.4	2
140	FDTD Electromagnetic and Thermal Simulation of a Metal Oxide Varistor Element Considering the Temperature Dependence of Its Resistivity. Electricity, 2021, 2, 158-167.	2.8	2
141	A TLM-based Surge Analysis Considering Lumped-Circuit Elements. IEEJ Transactions on Power and Energy, 2010, 130, 559-565.	0.2	2
142	Influence of a Measuring Wire on Transient Measurements in a Scaled-down Vertical Conductor Experiment. IEEJ Transactions on Power and Energy, 2013, 133, 555-561.	0.2	2
143	CIP-based Computation of Lightning Electromagnetic Pulses. IEEJ Transactions on Power and Energy, 2014, 134, 210-217.	0.2	2
144	FDTD Simulation of LEMPs Considering Ground Geometry and Grounded Structure. IEEJ Transactions on Power and Energy, 2014, 134, 267-272.	0.2	2

#	Article	IF	CITATIONS
145	Characterization of Lightning Current Measured on Tall Structures. , 0, , .		1
146	Measurement of Transient Horizontal Electric Fields Using Two Vertical Conducting Probes. IEEJ Transactions on Power and Energy, 2006, 126, 1171-1177.	0.2	1
147	Electric fields at the top of tall building associated with nearby lightning return strokes. , 2007, , .		1
148	Application of a Frequency-Domain Partial Element Equivalent Circuit Method to Tower Surge Response Calculations. Journal of International Council on Electrical Engineering, 2011, 1, 474-481.	0.4	1
149	Corona effect on insulator voltages for a direct lightning strike to a phase conductor. , 2014, , .		1
150	FDTD computations of lightning-induced voltages in the presence of nearby buildings. , 2015, , .		1
151	FDTD Analysis of Lightning Impulse Current Distribution Inside of ZnO Varistor Element. IEEJ Transactions on Power and Energy, 2016, 136, 839-845.	0.2	1
152	FDTD simulation of back-flashover at the transmission-line tower struck by lightning considering ground-wire corona. , 2016, , .		1
153	2D FDTD simulation of LEMP propagation considering the presence of conducting atmosphere. , 2016, , .		1
154	FDTD surge simulation of a vertical grounding rod considering soil ionization. , 2016, , .		1
155	Surge Withstand Capability of Parallel-connected Metal Oxide Varistors. , 2018, , .		1
156	Simplified Thermal Computation of a Metal Oxide Varistor Element under a Lightning Impulse Current Injection. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16, 879-881.	1.4	1
157	A Study of Absorbing Boundary Condition for Surge Simulations with the FDTD Method. IEEJ Transactions on Power and Energy, 2015, 135, 408-416.	0.2	1
158	Evaluation of Parameters of Lossy Medium for Surge Analysis of Grounding Electrodes. IEEJ Transactions on Power and Energy, 2005, 125, 626-627.	0.2	1
159	Review of FDTD Electromagnetic Field and Surge Simulations. IEEJ Transactions on Power and Energy, 2015, 135, 125-136.	0.2	1
160	Lightning Surge Analysis of HV Transmission Line: Bias AC-Voltage Effect on Multiphase Back-flashover. , 2021, , .		1
161	Measurement of Frequency-Dependent Conductivity and Relative Permittivity of a Soil Using Two Parallel Electrodes. IEEJ Transactions on Power and Energy, 2006, 126, 954-955.	0.2	0

An investigation of incoming lightning surges from a communication line. , 2012, , .

#	Article	IF	CITATIONS
163	FDTD analysis of lightning electromagnetic pulses considering topography and presence of grounded strike object. , 2014, , .		0
164	Simulation of lightning electromagnetic pulses with the TLM method in the 2D cylindrical coordinate system. , 2014, , .		0
165	A TLMâ€Based Surge Analysis of Grounding Electrodes. Electrical Engineering in Japan (English) Tj ETQq1 1 0.784	1314 rgBT 0.4	/Oyerlock 1
166	Application of a subgridding technique to a 3D CIP-based electromagnetic field analysis using the Hermite interpolation. , 2016, , .		0
167	Application of a Simplified Corona Discharge Model to a Lightning Surge Simulation with the PEEC Method. , 2018, , .		0
168	3D-FDTD Computation of Lightning Electromagnetic Fields in the Presence of a Mountain and a River. , 2019, , .		0
169	Circuit Model of Vertical Double-Circuit Transmission Tower and Line for Lightning Surge Analysis Considering TEM-mode Formation. , 2020, , .		0
170	Improvement of the Constrained Interpolation Profile Method for LEMP Simulations. IEEE Transactions on Electromagnetic Compatibility, 2021, , 1-8.	2.2	0
171	FDTD Simulation of Lightning-induced Surges. IEEJ Transactions on Power and Energy, 2021, 141, 217-228.	0.2	0
172	Equivalent Circuit Model of a Transmission Tower Considering a Lightning Struck Point and Cross-arms. Electric Power Systems Research, 2021, 196, 107253.	3.6	0
173	Step Response Analysis of an Impulse Voltage Measuring System using the FDTD Method. IEEJ Transactions on Power and Energy, 2012, 132, 507-514.	0.2	0
174	Novel Development of Power Transformation Technology Supporting Electric Power and Energy. IEEJ Transactions on Power and Energy, 2012, 132, 388-391.	0.2	0
175	A Surge Analysis in a System Connected with Dispersed Power Sources. IEEJ Transactions on Power and Energy, 2014, 134, 230-235.	0.2	0
176	Recent Trends of Lightning Surge Simulation Techniques. Journal of the Institute of Electrical Engineers of Japan, 2015, 135, 203-205.	0.0	0
177	Review of Lightning Electromagnetic Field and Surge Computations using the Constrained Interpolation Profile Method. IEEJ Transactions on Power and Energy, 2016, 136, 211-219.	0.2	0
178	FDTD Analysis of Lightning Current and Electric Field in a Real-scale CFRP Panel with Triangular Prism Cells. IEEJ Transactions on Power and Energy, 2018, 138, 622-627.	0.2	0
179	3D-FDTD Calculation of Lightning-Induced Voltages on an Overhead Wire in Presence of aTower and a Mountain. , 2021, , .		0