
Eek-hoon Jho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336943/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS Journal, 2022, 289, 5798-5818.	4.7	37
2	Regulation of Hippo signaling by metabolic pathways in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119201.	4.1	15
3	O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway. Cancers, 2022, 14, 3013.	3.7	3
4	Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death and Differentiation, 2022, 29, 1433-1449.	11.2	48
5	PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1. Cell Death and Differentiation, 2021, 28, 2555-2570.	11.2	21
6	SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Molecular Medicine, 2021, 13, e13076.	6.9	52
7	LGK974 suppresses lipopolysaccharide-induced endotoxemia in mice by modulating the crosstalk between the Wnt/β-catenin and NF-κB pathways. Experimental and Molecular Medicine, 2021, 53, 407-421.	7.7	17
8	TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy–lysosomal biogenesis. Cell Death and Disease, 2021, 12, 343.	6.3	14
9	Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 714330.	3.7	18
10	Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer's disease. Scientific Reports, 2021, 11, 20075.	3.3	8
11	TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29001-29012.	7.1	34
12	MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13529-13540.	7.1	33
13	<i>O</i> -GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14259-14269.	7.1	36
14	<scp>LDL</scp> receptorâ€related protein <scp>LRP</scp> 6 senses nutrient levels and regulates Hippo signaling. EMBO Reports, 2020, 21, e50103.	4.5	11
15	The Distinct Role of Tcfs and Lef1 in the Self-Renewal or Differentiation of Mouse Embryonic Stem Cells. International Journal of Stem Cells, 2020, 13, 192-201.	1.8	5
16	Hippo signaling is intrinsically regulated during cell cycle progression by APC/C ^{Cdh1} . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9423-9432.	7.1	48
17	A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Reports, 2019, 52, 577-588.	2.4	26
18	Ubiquitylation and degradation of adenomatous polyposis coli by MKRN1 enhances Wnt/β-catenin signaling. Oncogene, 2018, 37, 4273-4286.	5.9	20

Еек-ноол Јно

#	Article	IF	CITATIONS
19	Dâ€ŧyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity. Pigment Cell and Melanoma Research, 2018, 31, 374-383.	3.3	26
20	Dual role of YAP: oncoprotein and tumor suppressor. Journal of Thoracic Disease, 2018, 10, S3895-S3898.	1.4	10
21	The history and regulatory mechanism of the Hippo pathway. BMB Reports, 2018, 51, 106-118.	2.4	53
22	Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/l²-Catenin Signaling. Cell Reports, 2018, 25, 571-584.e5.	6.4	55
23	Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Reports, 2018, 51, 143-150.	2.4	46
24	Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation. Biochemical and Biophysical Research Communications, 2018, 503, 615-620.	2.1	10
25	Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling. Biochemical and Biophysical Research Communications, 2018, 503, 352-358.	2.1	10
26	Pja2 Inhibits Wnt/β-catenin Signaling by Reducing the Level of TCF/LEF1. International Journal of Stem Cells, 2018, 11, 242-247.	1.8	12
27	Hippo signaling: Special issue of BMB Reports in 2018. BMB Reports, 2018, 51, 105-105.	2.4	1
28	LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Scientific Reports, 2017, 7, 41612.	3.3	65
29	Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1013-1022.	3.8	10
30	Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the United States of America, 2017, 114, 4691-4696.	7.1	56
31	Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience, 2017, 355, 126-140.	2.3	14
32	Osmotic stressâ€induced phosphorylation by <scp>NLK</scp> at Ser128 activates <scp>YAP</scp> . EMBO Reports, 2017, 18, 72-86.	4.5	112
33	Phosphorylation by <scp>NLK</scp> inhibits <scp>YAP</scp> â€14â€3â€3â€interactions and induces its n localization. EMBO Reports, 2017, 18, 61-71.	uclear 4.5	139
34	Interaction of tankyrase and peroxiredoxin II is indispensable for the survival of colorectal cancer cells. Nature Communications, 2017, 8, 40.	12.8	37
35	Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer. BMB Reports, 2017, 50, 281-282.	2.4	10
36	In vitro NLK Kinase Assay. Bio-protocol, 2017, 7, e2593.	0.4	0

Еек-ноол Јно

#	Article	IF	CITATIONS
37	Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. Journal of Clinical Investigation, 2016, 127, 137-152.	8.2	190
38	Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes and Development, 2016, 30, 1454-1469.	5.9	121
39	Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling. BMB Reports, 2016, 49, 357-358.	2.4	21
40	Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells. Stem Cells International, 2015, 2015, 1-10.	2.5	15
41	Clinical analysis of spinal stereotactic radiosurgery in the treatment of neurogenic tumors. Journal of Neurosurgery: Spine, 2015, 23, 429-437.	1.7	26
42	Protein Arginine Methyltransferase 1 Methylates Smurf2. Molecules and Cells, 2015, 38, 723-728.	2.6	14
43	Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Reports, 2014, 47, 540-545.	2.4	69
44	Molecular epidemiology of norovirus GII.4 variants in children under 5 years with sporadic acute gastroenteritis in South Korea during 2006–2013. Journal of Clinical Virology, 2014, 61, 340-344.	3.1	18
45	Oseltamivir-resistant influenza viruses isolated in South Korea from 2005 to 2010. Archives of Virology, 2013, 158, 2365-2370.	2.1	3
46	High prevalence of amantadine-resistant influenza A virus isolated in Gyeonggi Province, South Korea, during 2005–2010. Archives of Virology, 2013, 158, 241-245.	2.1	8
47	Wnt/β-catenin signalling: from plasma membrane to nucleus. Biochemical Journal, 2013, 450, 9-21.	3.7	269
48	Axin expression enhances herpes simplex virus type 1 replication by inhibiting virus-mediated cell death in L929 cells. Journal of General Virology, 2013, 94, 1636-1646.	2.9	11
49	Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opinion on Therapeutic Targets, 2012, 16, 651-664.	3.4	46
50	Dual functions of DP1 promote biphasic Wnt-on and Wnt-off states during anteroposterior neural patterning. EMBO Journal, 2012, 31, 3384-3397.	7.8	20
51	Downregulation of Wnt/l²-catenin signaling causes degeneration of hippocampal neurons in vivo. Neurobiology of Aging, 2011, 32, 2316.e1-2316.e15.	3.1	28
52	Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. Biochemical Journal, 2011, 436, 263-269.	3.7	56
53	Wnt5a Potentiates U46619-Induced Platelet Aggregation via the PI3K/Akt Pathway. Molecules and Cells, 2011, 32, 333-336.	2.6	15
54	Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Research, 2011, 21, 911-921.	12.0	29

Еек-ноол Јно

#	Article	IF	CITATIONS
55	PKC inhibitors RO 31-8220 and Gö 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation. BMB Reports, 2011, 44, 140-145.	2.4	28
56	Identification of <i>ptpro</i> as a novel target gene of Wnt signaling and its potential role as a receptor for Wnt. FEBS Letters, 2010, 584, 3923-3928.	2.8	13
57	The Protein Stability of Axin, a Negative Regulator of Wnt Signaling, Is Regulated by Smad Ubiquitination Regulatory Factor 2 (Smurf2). Journal of Biological Chemistry, 2010, 285, 36420-36426.	3.4	91
58	Negative feedback regulation of Wnt signaling by Gβγ-mediated reduction of Dishevelled. Experimental and Molecular Medicine, 2009, 41, 695.	7.7	39
59	<i>Xenopus</i> Wntless and the Retromer Complex Cooperate To Regulate XWnt4 Secretion. Molecular and Cellular Biology, 2009, 29, 2118-2128.	2.3	34
60	Axin localizes to mitotic spindles and centrosomes in mitotic cells. Experimental Cell Research, 2009, 315, 943-954.	2.6	33
61	Multiple isoforms of β-TrCP display differential activities in the regulation of Wnt signaling. Cellular Signalling, 2009, 21, 43-51.	3.6	26
62	Identification of a Stroma-Mediated Wnt/ \hat{l}^2 -Catenin Signal Promoting Self-Renewal of Hematopoietic Stem Cells in the Stem Cell Niche. Stem Cells, 2009, 27, 1318-1329.	3.2	67
63	Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression. BMB Reports, 2009, 42, 217-222.	2.4	9
64	Olig2-Induced Neural Stem Cell Differentiation Involves Downregulation of Wnt Signaling and Induction of Dickkopf-1 Expression. PLoS ONE, 2008, 3, e3917.	2.5	36
65	Focal Adhesion Kinase Is Negatively Regulated by Phosphorylation at Tyrosine 407. Journal of Biological Chemistry, 2007, 282, 10398-10404.	3.4	30
66	Axin Inhibits Extracellular Signal-regulated Kinase Pathway by Ras Degradation via β-Catenin. Journal of Biological Chemistry, 2007, 282, 14482-14492.	3.4	63
67	Wnt/β-catenin signaling regulates expression of PRDC, an antagonist of the BMP-4 signaling pathway. Biochemical and Biophysical Research Communications, 2007, 354, 296-301.	2.1	30
68	Axin-independent phosphorylation of APC controls β-catenin signaling via cytoplasmic retention of β-catenin. Biochemical and Biophysical Research Communications, 2007, 357, 81-86.	2.1	19
69	Induced expression of the transcription of tropomodulin 1 by Wnt5a and characterization of the tropomodulin 1 promoter. Biochemical and Biophysical Research Communications, 2007, 363, 727-732.	2.1	10
70	Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS. Experimental Cell Research, 2005, 308, 18-28.	2.6	14
71	The role of GDNF in patterning the excretory system. Developmental Biology, 2005, 283, 70-84.	2.0	71
72	Wnt Signal Transduction and Its Involvement in Human Diseases. Journal of Korean Endocrine Society, 2005, 20, 306.	0.1	1

Еек-ноом Јно

#	Article	IF	CITATIONS
73	Accumulation and Aberrant Modifications of α-Crystallins in Anterior Polar Cataracts. Yonsei Medical Journal, 2004, 45, 73.	2.2	7
74	Modulation of β-Catenin Phosphorylation/Degradation by Cyclin-dependent Kinase 2. Journal of Biological Chemistry, 2004, 279, 19592-19599.	3.4	42
75	Adenomatous Polyposis Coli Is Down-regulated by the Ubiquitin-Proteasome Pathway in a Process Facilitated by Axin. Journal of Biological Chemistry, 2004, 279, 49188-49198.	3.4	39
76	Wnt-7a Causes Loss of Differentiated Phenotype and Inhibits Apoptosis of Articular Chondrocytes via Different Mechanisms. Journal of Biological Chemistry, 2004, 279, 26597-26604.	3.4	99
77	Hydrogen peroxide negatively modulates Wnt signaling through downregulation of β-catenin. Cancer Letters, 2004, 212, 225-231.	7.2	98
78	Cyclin-dependent kinase 2 regulates the interaction of Axin with β-catenin. Biochemical and Biophysical Research Communications, 2004, 317, 478-483.	2.1	23
79	Ectopic Expression of Axin Blocks Neuronal Differentiation of Embryonic Carcinoma P19 Cells. Journal of Biological Chemistry, 2003, 278, 13487-13495.	3.4	45
80	Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Molecular and Cellular Biology, 2002, 22, 1172-1183.	2.3	1,498
81	Domains of Axin and Disheveled Required for Interaction and Function in Wnt Signaling. Biochemical and Biophysical Research Communications, 2000, 276, 1162-1169.	2.1	61
82	Purification of GSK-3 by Affinity Chromatography on Immobilized Axin. Protein Expression and Purification, 2000, 20, 394-404.	1.3	90
83	Domains of Axin Involved in Protein–Protein Interactions, Wnt Pathway Inhibition, and Intracellular Localization. Journal of Cell Biology, 1999, 145, 741-756.	5.2	246
84	A GSK3β Phosphorylation Site in Axin Modulates Interaction with β-Catenin and Tcf-Mediated Gene Expression. Biochemical and Biophysical Research Communications, 1999, 266, 28-35.	2.1	95
85	c-Jun Amino-terminal Kinase Is Regulated by Gα12/Gα13 and Obligate for Differentiation of P19 Embryonal Carcinoma Cells by Retinoic Acid. Journal of Biological Chemistry, 1997, 272, 24468-24474.	3.4	61
86	Gα12 and Gα13 Mediate Differentiation of P19 Mouse Embryonal Carcinoma Cells in Response to Retinoic Acid. Journal of Biological Chemistry, 1997, 272, 24461-24467.	3.4	40
87	Complementary Wnt Sources Regulate Lymphatic Vascular Development Via PROX1-Dependent Wnt/β-Catenin Signaling. SSRN Electronic Journal, 0, , .	0.4	1