Fengxiao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Al Models for Green Communications Towards 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 210-247.	39.4	104
2	A Deep Reinforcement Learning-Based Dynamic Traffic Offloading in Space-Air-Ground Integrated Networks (SAGIN). IEEE Journal on Selected Areas in Communications, 2022, 40, 276-289.	14.0	49
3	Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA. IEEE Transactions on Network Science and Engineering, 2022, 9, 2330-2340.	6.4	16
4	A deep learning-based framework for detecting COVID-19 patients using chest X-rays. Multimedia Systems, 2022, 28, 1495-1513.	4.7	20
5	An Intelligent Route Computation Approach Based on Real-Time Deep Learning Strategy for Software Defined Communication Systems. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1554-1565.	4.6	73
6	Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption. IEEE Communications Surveys and Tutorials, 2021, 23, 1578-1598.	39.4	86
7	Comprehensive Survey on Machine Learning in Vehicular Network: Technology, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 2027-2057.	39.4	92
8	Optimizing Computation Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning Approach. IEEE Network, 2021, 35, 102-108.	6.9	85
9	ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System. IEEE Transactions on Sustainable Computing, 2020, 5, 568-580.	3.1	20
10	Reinforcement Learning-Based Radio Resource Control in 5G Vehicular Network. IEEE Wireless Communications Letters, 2020, 9, 611-614.	5.0	44
11	Future Intelligent and Secure Vehicular Network Toward 6G: Machine-Learning Approaches. Proceedings of the IEEE, 2020, 108, 292-307.	21.3	404
12	Deep Reinforcement Learning for Dynamic Uplink/Downlink Resource Allocation in High Mobility 5G HetNet. IEEE Journal on Selected Areas in Communications, 2020, 38, 2773-2782.	14.0	109
13	6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence. IEEE Wireless Communications, 2020, 27, 126-132.	9.0	442
14	Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE Wireless Communications, 2020, 27, 96-103.	9.0	248
15	An Absorbing Markov Chain Based Model to Solve Computation and Communication Tradeoff in GPU-Accelerated MDRUs for Safety Confirmation in Disaster Scenarios. IEEE Transactions on Computers, 2019, 68, 1256-1268.	3.4	1
16	Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence. IEEE Wireless Communications, 2019, 26, 140-147.	9.0	272
17	Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms. IEEE Transactions on Computers, 2019, 68, 939-950.	3.4	29
18	On A Novel Adaptive UAV-Mounted Cloudlet-Aided Recommendation System for LBSNs. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 565-577.	4.6	75

Fengxiao Tang

#	Article	IF	CITATIONS
19	On Removing Routing Protocol from Future Wireless Networks: A Real-time Deep Learning Approach for Intelligent Traffic Control. IEEE Wireless Communications, 2018, 25, 154-160.	9.0	197
20	AC-POCA: Anticoordination Game Based Partially Overlapping Channels Assignment in Combined UAV and D2D-Based Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 1672-1683.	6.3	237
21	Deep Spatiotemporal Partially Overlapping Channel Allocation: Joint CNN and Activity Vector Approach. , 2018, , .		5
22	On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach. IEEE Communications Letters, 2018, 22, 2479-2482.	4.1	39
23	On Extracting the Spatial-Temporal Features of Network Traffic Patterns: A Tensor Based Deep Learning Model. , 2018, , .		4
24	On a Novel Deep-Learning-Based Intelligent Partially Overlapping Channel Assignment in SDN-IoT. IEEE Communications Magazine, 2018, 56, 80-86.	6.1	97
25	A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks. IEEE Wireless Communications, 2018, 25, 74-81.	9.0	96
26	An Intelligent Traffic Load Prediction-Based Adaptive Channel Assignment Algorithm in SDN-IoT: A Deep Learning Approach. IEEE Internet of Things Journal, 2018, 5, 5141-5154.	8.7	198
27	State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow's Intelligent Network Traffic Control Systems. IEEE Communications Surveys and Tutorials, 2017, 19, 2432-2455.	39.4	611
28	Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning. IEEE Transactions on Computers, 2017, 66, 1946-1960.	3.4	275
29	The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective. IEEE Wireless Communications, 2017, 24, 146-153.	9.0	343

30 A Tensor Based Deep Learning Technique for Intelligent Packet Routing. , 2017, , .

33