
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336740/publications.pdf Version: 2024-02-01



Δεμιεμ Ρλι

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Network Diffusion Model of Disease Progression in Dementia. Neuron, 2012, 73, 1204-1215.                                                                                                                                    | 8.1 | 582       |
| 2  | Network diffusion accurately models the relationship between structural and functional brain connectivity networks. Neurolmage, 2014, 90, 335-347.                                                                            | 4.2 | 234       |
| 3  | Network Diffusion Model of Progression Predicts Longitudinal Patterns of Atrophy and Metabolism<br>in Alzheimer's Disease. Cell Reports, 2015, 10, 359-369.                                                                   | 6.4 | 177       |
| 4  | Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.<br>Neurolmage, 2018, 172, 728-739.                                                                                            | 4.2 | 114       |
| 5  | The Network Modification (NeMo) Tool: Elucidating the Effect of White Matter Integrity Changes on Cortical and Subcortical Structural Connectivity. Brain Connectivity, 2013, 3, 451-463.                                     | 1.7 | 95        |
| 6  | Structural connectome disruption at baseline predicts 6-months post-stroke outcome. Human Brain<br>Mapping, 2016, 37, 2587-2601.                                                                                              | 3.6 | 89        |
| 7  | Simultaneous Phase Unwrapping and Removal of Chemical Shift (SPURS) Using Graph Cuts: Application<br>in Quantitative Susceptibility Mapping. IEEE Transactions on Medical Imaging, 2015, 34, 531-540.                         | 8.9 | 81        |
| 8  | The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain. PLoS ONE, 2011, 6, e14832.                                                                                                                  | 2.5 | 67        |
| 9  | <i>T</i> <sub>2</sub> prep threeâ€dimensional spiral imaging with efficient whole brain coverage for myelin water quantification at 1.5 tesla. Magnetic Resonance in Medicine, 2012, 67, 614-621.                             | 3.0 | 67        |
| 10 | Widespread white matter degeneration preceding the onset of dementia. Alzheimer's and Dementia, 2015, 11, 485.                                                                                                                | 0.8 | 67        |
| 11 | Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable. Superconductor Science and Technology, 2011, 24, 065024.                                                                 | 3.5 | 62        |
| 12 | Bayesian parallel imaging with edge-preserving priors. Magnetic Resonance in Medicine, 2007, 57, 8-21.                                                                                                                        | 3.0 | 59        |
| 13 | Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. NeuroImage: Clinical, 2015, 9, 369-375.                                                                                                       | 2.7 | 58        |
| 14 | Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models:<br>Involvement of retrograde and anterograde axonal propagation. Neurobiology of Disease, 2020, 134,<br>104623.          | 4.4 | 57        |
| 15 | Bayesian algorithm using spatial priors for multiexponential <i>T</i> <sub>2</sub> relaxometry from<br>multiecho spin echo MRI. Magnetic Resonance in Medicine, 2012, 68, 1536-1543.                                          | 3.0 | 56        |
| 16 | Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Computational Biology, 2017, 13, e1005550.                                                      | 3.2 | 56        |
| 17 | Feasibility and reproducibility of whole brain myelin water mapping in 4 minutes using fast acquisition<br>with spiral trajectory and adiabatic T2prep (FAST-T2) at 3T. Magnetic Resonance in Medicine, 2016, 76,<br>456-465. | 3.0 | 53        |
| 18 | Spatial patterns of genomeâ€wide expression profiles reflect anatomic and fiber connectivity<br>architecture of healthy human brain. Human Brain Mapping, 2014, 35, 4204-4218.                                                | 3.6 | 47        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Exploring the brain's structural connectome: A quantitative stroke lesionâ€dysfunction mapping study.<br>Human Brain Mapping, 2015, 36, 2147-2160.                                                                                        | 3.6 | 47        |
| 20 | Regional expression of genes mediating trans-synaptic alpha-synuclein transfer predicts regional atrophy in Parkinson disease. NeuroImage: Clinical, 2018, 18, 456-466.                                                                   | 2.7 | 47        |
| 21 | Spectral graph theory of brain oscillations. Human Brain Mapping, 2020, 41, 2980-2998.                                                                                                                                                    | 3.6 | 46        |
| 22 | Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimerâ $\in$ <sup>IM</sup> s disease. ELife, 0, 11, .                                                           | 6.0 | 45        |
| 23 | Predicting Future Brain Tissue Loss From White Matter Connectivity Disruption in Ischemic Stroke.<br>Stroke, 2014, 45, 717-722.                                                                                                           | 2.0 | 44        |
| 24 | Multi-Compartment T2 Relaxometry Using a Spatially Constrained Multi-Gaussian Model. PLoS ONE, 2014, 9, e98391.                                                                                                                           | 2.5 | 44        |
| 25 | Longitudinal increases in structural connectome segregation and functional connectome<br>integration are associated with better recovery after mild TBI. Human Brain Mapping, 2019, 40,<br>4441-4456.                                     | 3.6 | 39        |
| 26 | A method for inferring regional origins of neurodegeneration. Brain, 2018, 141, 863-876.                                                                                                                                                  | 7.6 | 37        |
| 27 | Models of Network Spread and Network Degeneration in Brain Disorders. Biological Psychiatry:<br>Cognitive Neuroscience and Neuroimaging, 2018, 3, 788-797.                                                                                | 1.5 | 37        |
| 28 | A Pilot Study of Quantitative MRI Measurements of Ventricular Volume and Cortical Atrophy for the<br>Differential Diagnosis of Normal Pressure Hydrocephalus. Neurology Research International, 2012,<br>2012, 1-6.                       | 1.3 | 36        |
| 29 | Predictive Model of Spread of Progressive Supranuclear Palsy Using Directional Network Diffusion.<br>Frontiers in Neurology, 2017, 8, 692.                                                                                                | 2.4 | 36        |
| 30 | The generation and validation of white matter connectivity importance maps. Neurolmage, 2011, 58, 109-121.                                                                                                                                | 4.2 | 35        |
| 31 | Profilometry: A new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis. Human Brain Mapping, 2016, 37, 989-1004.                                                             | 3.6 | 34        |
| 32 | Regional transcriptional architecture of Parkinson's disease pathogenesis and network spread. Brain,<br>2019, 142, 3072-3085.                                                                                                             | 7.6 | 32        |
| 33 | Linking white matter integrity loss to associated cortical regions using structural connectivity information in Alzheimer's disease and fronto-temporal dementia: The Loss in Connectivity (LoCo) score. NeuroImage, 2012, 61, 1311-1323. | 4.2 | 26        |
| 34 | Connectivity, not region-intrinsic properties, predicts regional vulnerability to progressive tau pathology in mouse models of disease. Acta Neuropathologica Communications, 2017, 5, 61.                                                | 5.2 | 26        |
| 35 | Loss in connectivity among regions of the brain reward system in alcohol dependence. Human Brain<br>Mapping, 2013, 34, 3129-3142.                                                                                                         | 3.6 | 25        |
| 36 | Relating Cortical Atrophy in Temporal Lobe Epilepsy with Graph Diffusion-Based Network Models. PLoS<br>Computational Biology, 2015, 11, e1004564.                                                                                         | 3.2 | 24        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spectral graph theory of brain oscillations—-Revisited and improved. NeuroImage, 2022, 249, 118919.                                                                                                     | 4.2 | 22        |
| 38 | Spatial HARDI: Improved visualization of complex white matter architecture with Bayesian spatial regularization. NeuroImage, 2011, 54, 396-409.                                                         | 4.2 | 21        |
| 39 | Preserved Structural Network Organization Mediates Pathology Spread in Alzheimer's Disease<br>Spectrum Despite Loss of White Matter Tract Integrity. Journal of Alzheimer's Disease, 2018, 65, 747-764. | 2.6 | 21        |
| 40 | Analysis of Amyloid-β Pathology Spread in Mouse Models Suggests Spread Is Driven by Spatial Proximity,<br>Not Connectivity. Frontiers in Neurology, 2017, 8, 653.                                       | 2.4 | 20        |
| 41 | Statistics of Weighted Brain Networks Reveal Hierarchical Organization and Gaussian Degree Distribution. PLoS ONE, 2012, 7, e35029.                                                                     | 2.5 | 20        |
| 42 | Diffuse reduction of cerebral grey matter volumes in Erdheim-Chester disease. Orphanet Journal of<br>Rare Diseases, 2016, 11, 109.                                                                      | 2.7 | 19        |
| 43 | Stereotaxic Diffusion Tensor Imaging White Matter Atlas for the in vivo Domestic Feline Brain.<br>Frontiers in Neuroanatomy, 2020, 14, 1.                                                               | 1.7 | 19        |
| 44 | Computational Models in Electroencephalography. Brain Topography, 2022, 35, 142-161.                                                                                                                    | 1.8 | 19        |
| 45 | Frequency dependent magnetization of superconductor strip. Superconductor Science and Technology, 2011, 24, 045006.                                                                                     | 3.5 | 18        |
| 46 | Current carrying capability of HTS Roebel cable. Physica C: Superconductivity and Its Applications, 2011, 471, 42-47.                                                                                   | 1.2 | 18        |
| 47 | The Brain's Structural Connectome Mediates the Relationship between Regional Neuroimaging<br>Biomarkers inÂAlzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 1639-1657.                    | 2.6 | 18        |
| 48 | Regional vulnerability in Alzheimer's disease: The role of cellâ€autonomous and transneuronal processes. Alzheimer's and Dementia, 2018, 14, 797-810.                                                   | 0.8 | 17        |
| 49 | Emergence of canonical functional networks from the structural connectome. NeuroImage, 2021, 237, 118190.                                                                                               | 4.2 | 15        |
| 50 | MRI Analysis of White Matter Myelin Water Content in Multiple Sclerosis: A Novel Approach Applied to Finding Correlates of Cortical Thinning. Frontiers in Neuroscience, 2017, 11, 284.                 | 2.8 | 14        |
| 51 | Molecular Imaging of Striatal Dopaminergic Neuronal Loss and the Neurovascular Unit in Parkinson<br>Disease. Frontiers in Neuroscience, 2020, 14, 528809.                                               | 2.8 | 13        |
| 52 | Network model of pathology spread recapitulates neurodegeneration and selective vulnerability in Huntington's Disease. NeuroImage, 2021, 235, 118008.                                                   | 4.2 | 12        |
| 53 | Mature Hippocampal Neurons Require LIS1 for Synaptic Integrity: Implications for Cognition.<br>Biological Psychiatry, 2018, 83, 518-529.                                                                | 1.3 | 11        |
| 54 | Algebraic relationship between the structural network's Laplacian and functional network's<br>adjacency matrix is preserved in temporal lobe epilepsy subjects. NeuroImage, 2021, 228, 117705.          | 4.2 | 10        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Maximum Likelihood Approach to Parallel Imaging With Coil Sensitivity Noise. IEEE Transactions on<br>Medical Imaging, 2007, 26, 1046-1057.                                                                                       | 8.9 | 9         |
| 56 | Origins of atrophy in Parkinson linked to early onset and local transcription patterns. Brain<br>Communications, 2020, 2, fcaa065.                                                                                                 | 3.3 | 9         |
| 57 | Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph<br>Theoretic Analysis. Brain Connectivity, 2021, 11, 799-814.                                                                        | 1.7 | 9         |
| 58 | Time-varying dynamic network model for dynamic resting state functional connectivity in fMRI and MEG imaging. NeuroImage, 2022, 254, 119131.                                                                                       | 4.2 | 9         |
| 59 | Age-Related Changes in Topological Degradation of White Matter Networks and Gene Expression in Chronic Schizophrenia. Brain Connectivity, 2017, 7, 574-589.                                                                        | 1.7 | 8         |
| 60 | Combined Model of Aggregation and Network Diffusion Recapitulates Alzheimer's Regional<br>Tau-Positron Emission Tomography. Brain Connectivity, 2021, 11, 624-638.                                                                 | 1.7 | 8         |
| 61 | Visualization and segmentation of liver tumors using dynamic contrast MRI. , 2009, 2009, 6985-9.                                                                                                                                   |     | 7         |
| 62 | Emergence of directional bias in tau deposition from axonal transport dynamics. PLoS Computational<br>Biology, 2021, 17, e1009258.                                                                                                 | 3.2 | 7         |
| 63 | Predicting Functional Connectivity From Observed and Latent Structural Connectivity via Eigenvalue<br>Mapping. Frontiers in Neuroscience, 2022, 16, 810111.                                                                        | 2.8 | 7         |
| 64 | Editorial: Network Spread Models of Neurodegenerative Diseases. Frontiers in Neurology, 2018, 9, 1159.                                                                                                                             | 2.4 | 6         |
| 65 | Dynamical Role of Pivotal Brain Regions in Parkinson Symptomatology Uncovered with Deep Learning.<br>Brain Sciences, 2020, 10, 73.                                                                                                 | 2.3 | 6         |
| 66 | Population-based input function for TSPO quantification and kinetic modeling with [11C]-DPA-713.<br>EJNMMI Physics, 2021, 8, 39.                                                                                                   | 2.7 | 6         |
| 67 | Macroscopic modelling of Alzheimer's disease: difficulties and challenges. Brain Multiphysics, 2021, 2,<br>100040.                                                                                                                 | 2.3 | 6         |
| 68 | Robust Myelin Quantitative Imaging from Multi-echo T2 MRI Using Edge Preserving Spatial Priors.<br>Lecture Notes in Computer Science, 2013, 16, 622-630.                                                                           | 1.3 | 6         |
| 69 | Network Analysis on Predicting Mean Diffusivity Change at Group Level in Temporal Lobe Epilepsy.<br>Brain Connectivity, 2016, 6, 607-620.                                                                                          | 1.7 | 5         |
| 70 | Modeling seeding and neuroanatomic spread of pathology in amyotrophic lateral sclerosis.<br>NeuroImage, 2022, 251, 118968.                                                                                                         | 4.2 | 5         |
| 71 | Matrix Inversion and Subset Selection (MISS): A pipeline for mapping of diverse cell types across the<br>murine brain. Proceedings of the National Academy of Sciences of the United States of America, 2022,<br>119, e2111786119. | 7.1 | 5         |
| 72 | Fast and Stable Bayesian Image Expansion Using Sparse Edge Priors. IEEE Transactions on Image<br>Processing, 2007, 16, 1073-1084.                                                                                                  | 9.8 | 4         |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A fast Edgeâ€preserving Bayesian reconstruction method for Parallel Imaging applications in cardiac<br>MRI. Magnetic Resonance in Medicine, 2011, 65, 184-189.                                      | 3.0 | 4         |
| 74 | Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. Journal of Computational Neuroscience, 2019, 47, 1-16.                     | 1.0 | 4         |
| 75 | Automatic algorithm for correcting motion artifacts in time-resolved two-dimensional magnetic resoance angiography using convex projections. Magnetic Resonance in Medicine, 2006, 55, 649-658.     | 3.0 | 3         |
| 76 | Normal diffusivity of the domestic feline brain. Journal of Comparative Neurology, 2019, 527, 1012-1023.                                                                                            | 1.6 | 3         |
| 77 | Network-constrained technique to characterize pathology progression rate in Alzheimer's disease.<br>Brain Communications, 2021, 3, fcab144.                                                         | 3.3 | 3         |
| 78 | Stability and dynamics of a spectral graph model of brain oscillations. Network Neuroscience, 2023, 7, 48-72.                                                                                       | 2.6 | 3         |
| 79 | Graph models of brain diseases. , 2015, , .                                                                                                                                                         |     | 2         |
| 80 | Systematic Differences Between Perceptually Relevant Image Statistics of Brain MRI and Natural<br>Images. Frontiers in Neuroinformatics, 2019, 13, 46.                                              | 2.5 | 2         |
| 81 | High activity and high functional connectivity are mutually exclusive in resting state zebrafish and human brains. BMC Biology, 2022, 20, 84.                                                       | 3.8 | 2         |
| 82 | Improved Signal-to-Noise Ratio in Parallel Coronary Artery Magnetic Resonance Angiography using<br>Graph Cuts based Bayesian Reconstruction. , 2006, 2006, 703-6.                                   |     | 1         |
| 83 | Colocalization of atrophy and tau improves AI classification of Alzheimer phenotypical variants.<br>Alzheimer's and Dementia, 2020, 16, e046258.                                                    | 0.8 | 1         |
| 84 | Feasibility of Population-Based Input Function for Kinetic Analysis of [ <sup>11</sup> C]-DPA-713. , 2020, ,                                                                                        |     | 1         |
| 85 | New applications of diffusion model based prediction of pathological brain alterations: Introducing<br>amyloidâ€ŧau interactions. Alzheimer's and Dementia, 2021, 17, .                             | 0.8 | 1         |
| 86 | Abnormal neural oscillations depicting excitatoryâ€inhibitory imbalance are distinctly associated with<br>amyloid and tau depositions in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, . | 0.8 | 1         |
| 87 | Statistical Aspects of Parallel Imaging Reconstruction. , 2006, 2006, 377-80.                                                                                                                       |     | Ο         |
| 88 | A Bayesian Framework For Reconstruction Of Accelerated MRI Using Graph Cuts. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2007, , .                              | 0.0 | 0         |
| 89 | Beyond the logistic growth model for nitrous oxide emission factors from agricultural soils. , 2011, ,                                                                                              |     | 0         |
| 90 | Discriminative Random Field Segmentation of Lung Nodules in CT Studies. Computational and<br>Mathematical Methods in Medicine, 2013, 2013, 1-9.                                                     | 1.3 | 0         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | O4â€07â€02: NETWORK TRANSMISSION MODEL RECAPITULATES AMYLOID AND TAU SPREAD AND PREDICTS IMAGING FINDINGS. Alzheimer's and Dementia, 2016, 12, P347.                                                                                  | 0.8 | 0         |
| 92 | Network diffusion model enhances predictions of future tauâ€₽ET burden in Alzheimer's patients.<br>Alzheimer's and Dementia, 2020, 16, e039480.                                                                                       | 0.8 | 0         |
| 93 | How â€~atypical' is the neuroimaging signature of Alzheimer's atypical variants? MRI and PET imaging of posterior cortical atrophy and logopenic variant of primary progressive aphasia. Alzheimer's and Dementia, 2020, 16, e040623. | 0.8 | 0         |
| 94 | A dictionaryâ€based graphâ€cut algorithm for MRI reconstruction. NMR in Biomedicine, 2020, 33, e4344.                                                                                                                                 | 2.8 | 0         |
| 95 | The effect of microglial genes on network diffusion of pathology in mouse models of tauopathy.<br>Alzheimer's and Dementia, 2021, 17, .                                                                                               | 0.8 | 0         |
| 96 | Axonal transport dynamics explain directional bias in tau deposition Alzheimer's and Dementia, 2021,<br>17 Suppl 3, e052876.                                                                                                          | 0.8 | 0         |
| 97 | Combining network spread with protein aggregation correctly recapitulates empirical spatio-temporal progression of Alzheimer's tau pathology Alzheimer's and Dementia, 2021, 17 Suppl 3, e054147.                                     | 0.8 | 0         |