James Cuthbert Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336579/publications.pdf Version: 2024-02-01

		70961	66788
117	6,791	41	78
papers	citations	h-index	g-index
122	122	122	8548
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lewis Wolpert (1929-2021). Development (Cambridge), 2021, 148, .	1.2	5
2	Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight, 2021, 6, .	2.3	29
3	Personal observations on COVID-19 and the conduct and application of biomedical science. Interface Focus, 2021, 11, 20210053.	1.5	1
4	FAM83F regulates canonical Wnt signalling through an interaction with CK1α. Life Science Alliance, 2021, 4, e202000805.	1.3	6
5	Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nature Communications, 2020, 11, 4110.	5.8	20
6	Common and distinct transcriptional signatures of mammalian embryonic lethality. Nature Communications, 2019, 10, 2792.	5.8	16
7	Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nature Communications, 2019, 10, 4269.	5.8	45
8	The Spatiotemporal Control of Zygotic Genome Activation. IScience, 2019, 16, 485-498.	1.9	20
9	The Innate Immune Response of Frog Embryos to Antisense Morpholino Oligomers Depends on Developmental Stage, GC Content and Dose. Developmental Cell, 2019, 49, 506-507.	3.1	1
10	Mapping Chromatin Features of Xenopus Embryos. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot100263.	0.2	3
11	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 2019, 4, 133.	0.9	6
12	FAM83G/PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. Journal of Cell Science, 2018, 131, .	1.2	26
13	<scp>PAWS</scp> 1 controls Wnt signalling through association with casein kinase 1α. EMBO Reports, 2018, 19, .	2.0	27
14	Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature, 2018, 555, 463-468.	13.7	287
15	Dissecting and Culturing Animal Cap Explants. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097329.	0.2	7
16	The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms. Science Signaling, 2018, 11, .	1.6	88
17	Mammalian embryo comparison identifies novel pluripotency genes associated with the naĀ~ve or primed state. Biology Open, 2018, 7, .	0.6	32
18	Transcriptomics of dorso-ventral axis determination in Xenopus tropicalis. Developmental Biology, 2018, 439, 69-79.	0.9	0

#	Article	IF	CITATIONS
19	Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Developmental Cell, 2018, 44, 597-610.e10.	3.1	43
20	Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition. Developmental Cell, 2017, 42, 82-96.e3.	3.1	36
21	Efficient Preparation of High-Complexity ChIP-Seq Profiles from Early Xenopus Embryos. Methods in Molecular Biology, 2017, 1507, 23-42.	0.4	6
22	Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafish embryo. Wellcome Open Research, 2017, 2, 111.	0.9	6
23	Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes. PLoS ONE, 2017, 12, e0171143.	1.1	16
24	Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes. PLoS ONE, 2017, 12, e0172227.	1.1	13
25	The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nature Communications, 2016, 7, 12652.	5.8	23
26	Targeting BMP signalling in cardiovascular disease and anaemia. Nature Reviews Cardiology, 2016, 13, 106-120.	6.1	193
27	Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Research, 2016, 1, 1.	0.9	29
28	Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq. Journal of Visualized Experiments, 2015, , .	0.2	13
29	Investigating Physical Chromatin Associations Across the <i>Xenopus</i> Genome by Chromatin Immunoprecipitation. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080614.	0.2	13
30	USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open Biology, 2014, 4, 140065.	1.5	45
31	Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling. Open Biology, 2014, 4, 130210.	1.5	35
32	High-resolution analysis of gene activity during the <i>Xenopus</i> mid-blastula transition. Development (Cambridge), 2014, 141, 1927-1939.	1.2	87
33	New insights into the maternal to zygotic transition. Development (Cambridge), 2014, 141, 3834-3841.	1.2	109
34	InÂVivo T-Box Transcription Factor Profiling Reveals Joint Regulation of Embryonic Neuromesodermal Bipotency. Cell Reports, 2013, 4, 1185-1196.	2.9	97
35	Titration of Four Replication Factors Is Essential for the <i>Xenopus laevis</i> Midblastula Transition. Science, 2013, 341, 893-896.	6.0	201
36	Identification of the zebrafish maternal and paternal transcriptomes. Development (Cambridge), 2013, 140, 2703-2710.	1.2	169

#	Article	IF	CITATIONS
37	Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice. DMM Disease Models and Mechanisms, 2013, 6, 562-6.	1.2	65
38	Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. Open Biology, 2012, 2, 120060.	1.5	3
39	Genomic Targets of Brachyury (T) in Differentiating Mouse Embryonic Stem Cells. PLoS ONE, 2012, 7, e33346.	1.1	62
40	BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell, 2011, 9, 144-155.	5.2	340
41	Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53. New Biotechnology, 2011, 28, 334-341.	2.4	1
42	The Midblastula Transition Defines the Onset of Y RNA-Dependent DNA Replication in Xenopus laevis. Molecular and Cellular Biology, 2011, 31, 3857-3870.	1.1	36
43	<i>no tail</i> integrates two modes of mesoderm induction. Development (Cambridge), 2010, 137, 1127-1135.	1.2	49
44	The accidental biologist: an interview with Jim Smith. DMM Disease Models and Mechanisms, 2010, 3, 11-14.	1.2	1
45	A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. Developmental Biology, 2010, 340, 75-87.	0.9	13
46	Loss of REEP4 causes paralysis of the Xenopus embryo. International Journal of Developmental Biology, 2009, 53, 37-43.	0.3	9
47	A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3829-3834.	3.3	109
48	Hello goodbye. Development (Cambridge), 2009, 136, 4065-4065.	1.2	0
49	Visualisation and Quantification of Morphogen Gradient Formation in the Zebrafish. PLoS Biology, 2009, 7, e1000101.	2.6	74
50	Identification of direct T-box target genes in the developing zebrafish mesoderm. Development (Cambridge), 2009, 136, 749-760.	1.2	48
51	Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in <i>Xenopus</i> . Development (Cambridge), 2009, 136, 2803-2813.	1.2	19
52	Forming and Interpreting Gradients in the Early Xenopus Embryo. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002477-a002477.	2.3	25
53	Smicl is required for phosphorylation of RNA polymerase II and affects 3′-end processing of RNA at the midblastula transition in Xenopus. Development (Cambridge), 2009, 136, 3451-3461.	1.2	6
54	KazrinA is required for axial elongation and epidermal integrity in <i>Xenopus tropicalis</i> . Developmental Dynamics, 2008, 237, 1718-1725.	0.8	11

#	Article	IF	CITATIONS
55	Prdm1―and Sox6â€mediated transcriptional repression specifies muscle fibre type in the zebrafish embryo. EMBO Reports, 2008, 9, 683-689.	2.0	119
56	Evading the annotation bottleneck: using sequence similarity to search non-sequence gene data. BMC Bioinformatics, 2008, 9, 442.	1.2	14
57	Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Developmental Biology, 2008, 320, 351-365.	0.9	19
58	Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus. Methods, 2008, 45, 192-195.	1.9	15
59	Mesoderm Induction Assays. Methods in Molecular Biology, 2008, 461, 395-404.	0.4	4
60	Whither <i>Development</i> and developmental biology?. Development (Cambridge), 2008, 135, 1-1.	1.2	7
61	Pointing a digit at digitised JEEM. Development (Cambridge), 2008, 135, 2339-2339.	1.2	6
62	Controlling morpholino experiments: don't stop making antisense. Development (Cambridge), 2008, 135, 1735-1743.	1.2	523
63	Introduction. Calcium signals and developmental patterning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1307-1310.	1.8	10
64	An Overview of Xenopus Development. Methods in Molecular Biology, 2008, 461, 385-394.	0.4	6
65	Wholemount In Situ Hybridization to Xenopus Embryos. Methods in Molecular Biology, 2008, 461, 697-702.	0.4	7
66	Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus. Development (Cambridge), 2007, 134, 4209-4218.	1.2	86
67	Development in 2007: new developments and sad goodbyes. Development (Cambridge), 2007, 134, 1-1.	1.2	1
68	A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus. BMC Developmental Biology, 2007, 7, 47.	2.1	51
69	CVAK104 is a Novel Regulator of Clathrin-mediated SNARE Sorting. Traffic, 2007, 8, 893-903.	1.3	29
70	Xnrs and Activin Regulate Distinct Genes during Xenopus Development: Activin Regulates Cell Division. PLoS ONE, 2007, 2, e213.	1.1	22
71	Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biology, 2006, 7, R71.	13.9	80
72	Transcriptional regulation of mesendoderm formation in Xenopus. Seminars in Cell and Developmental Biology, 2006, 17, 99-109.	2.3	36

#	Article	IF	CITATIONS
73	Neurotrophin Receptor Homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development. Developmental Biology, 2006, 300, 554-569.	0.9	4
74	Development: moving on in 2006. Development (Cambridge), 2006, 133, 1-2.	1.2	0
75	Stem cells in Development: new editor, renewed commitment. Development (Cambridge), 2006, 133, 2449-2449.	1.2	0
76	Metazoan Scc4 Homologs Link Sister Chromatid Cohesion to Cell and Axon Migration Guidance. PLoS Biology, 2006, 4, e242.	2.6	95
77	The novel Smad-interacting protein Smicl regulates Chordinexpression in the Xenopus embryo. Development (Cambridge), 2005, 132, 4575-4586.	1.2	14
78	Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development (Cambridge), 2005, 132, 2513-2520.	1.2	131
79	XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFÎ ² proteins in Xenopusdevelopment. Development (Cambridge), 2005, 132, 591-602.	1.2	43
80	Functional Specificity of the Xenopus T-Domain Protein Brachyury Is Conferred by Its Ability to Interact with Smad1. Developmental Cell, 2005, 8, 599-610.	3.1	72
81	The ARID domain protein dril1 is necessary for TGFβ signaling in Xenopus embryos. Developmental Biology, 2005, 278, 542-559.	0.9	17
82	A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis. Mechanisms of Development, 2005, 122, 355-363.	1.7	36
83	Refinement of gene expression patterns in the early Xenopusembryo. Development (Cambridge), 2004, 131, 4687-4696.	1.2	51
84	Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development (Cambridge), 2004, 131, 4977-4986.	1.2	55
85	Development and `open access'. Development (Cambridge), 2004, 131, 1-1.	1.2	0
86	Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development (Cambridge), 2004, 131, 4999-5007.	1.2	62
87	Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development (Cambridge), 2004, 131, 1157-1164.	1.2	159
88	Visualizing Long-Range Movement of the Morphogen Xnr2 in the Xenopus Embryo. Current Biology, 2004, 14, 1916-1923.	1.8	66
89	Visualizing Long-Range Movement of the Morphogen Xnr2 in the Xenopus Embryo. Current Biology, 2004, 14, 2312.	1.8	2
90	Identifying transcriptional targets. Genome Biology, 2004, 5, 210.	13.9	34

#	Article	IF	CITATIONS
91	Defining a large set of full-length clones from a Xenopus tropicalis EST project. Developmental Biology, 2004, 271, 498-516.	0.9	111
92	Molecular components of the endoderm specification pathway inXenopus tropicalis. Developmental Dynamics, 2003, 226, 118-127.	0.8	26
93	Ch-ch-ch-changes Development (Cambridge), 2003, 130, 1-1.	1.2	4
94	Regulation of apoptosis in theXenopus embryo by Bix3. Development (Cambridge), 2003, 130, 4611-4622.	1.2	20
95	Wise, a context-dependent activator and inhibitor of Wnt signalling. Development (Cambridge), 2003, 130, 4295-4305.	1.2	294
96	Characterizing Embryonic Gene Expression Patterns in the Mouse Using Nonredundant Sequence-Based Selection. Genome Research, 2003, 13, 2609-2620.	2.4	27
97	Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1. Mechanisms of Development, 2002, 111, 37-46.	1.7	40
98	Techniques and probes for the study ofXenopus tropicalis development. Developmental Dynamics, 2002, 225, 499-510.	0.8	240
99	Spatial and Temporal Patterns of Cell Division during Early Xenopus Embryogenesis. Developmental Biology, 2001, 229, 307-318.	0.9	151
100	The Wnt/β-Catenin Pathway Posteriorizes Neural Tissue in Xenopus by an Indirect Mechanism Requiring FGF Signalling. Developmental Biology, 2001, 239, 148-160.	0.9	117
101	XSIP1, a Xenopus zinc finger/homeodomain encoding gene highly expressed during early neural development. Mechanisms of Development, 2000, 94, 189-193.	1.7	46
102	SIP1, a Novel Zinc Finger/Homeodomain Repressor, Interacts with Smad Proteins and Binds to 5′-CACCT Sequences in Candidate Target Genes. Journal of Biological Chemistry, 1999, 274, 20489-20498.	1.6	445
103	Identification of Two Amino Acids in Activin A That Are Important for Biological Activity and Binding to the Activin Type II Receptors. Journal of Biological Chemistry, 1999, 274, 9821-9827.	1.6	40
104	A Short Loop on the ALK-2 and ALK-4 Activin Receptors Regulates Signaling Specificity but Cannot Account for All Their Effects on EarlyXenopus Development. Journal of Biological Chemistry, 1999, 274, 7929-7935.	1.6	10
105	T-box genes: what they do and how they do it. Trends in Genetics, 1999, 15, 154-158.	2.9	223
106	An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Current Biology, 1999, 9, 946-S1.	1.8	83
107	Brachyury and the T-box genes. Current Opinion in Genetics and Development, 1997, 7, 474-480.	1.5	131

How to tell a cell where it is. Nature, 1996, 381, 367-368.

13.7 18

#	Article	IF	CITATIONS
109	Angles on activin's absence. Nature, 1995, 374, 311-312.	13.7	11
110	TheXenopus platelet-derived growth factor $\hat{I}\pm$ receptor: cDNA Cloning and demonstration that mesoderm induction establishes the lineage-specific pattern of ligand and receptor gene expression. Genesis, 1993, 14, 185-193.	3.1	27
111	Control of vertebrate gastrulation: inducing signals and responding genes. Current Opinion in Genetics and Development, 1993, 3, 655-661.	1.5	70
112	Mesoderm patterning and tenascin regionalization in Xenopus laevis embryos. Biology of the Cell, 1992, 76, 216-216.	0.7	0
113	Positional signalling: where are we now?. Trends in Genetics, 1989, 5, 165-166.	2.9	0
114	Biochemical specificity of Xenopus notochord. Differentiation, 1985, 29, 109-115.	1.0	118
115	Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling Wellcome Open Research, 0, 4, 133.	0.9	9
116	Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Research, 0, 1, 1.	0.9	16
117	The Spatio-Temporal Control of Zygotic Genome Activation. SSRN Electronic Journal, 0, , .	0.4	1