
Thomas R Shultz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336551/publications.pdf Version: 2024-02-01

ΤΗΩΜΛς Ρ ΟΗΠΙΤΖ

#	Article	IF	CITATIONS
1	A computational model of infant learning and reasoning with probabilities Psychological Review, 2022, 129, 1281-1295.	3.8	4
2	Computational Approaches to Cognitive Development. , 2022, , 318-338.		0
3	Copy the In-group: Group Membership Trumps Perceived Reliability, Warmth, and Competence in a Social-Learning Task. Psychological Science, 2022, 33, 165-174.	3.3	1
4	A Resourceâ€Rational, Process‣evel Account of the St. Petersburg Paradox. Topics in Cognitive Science, 2020, 12, 417-432.	1.9	1
5	A computational model of systems memory consolidation and reconsolidation. Hippocampus, 2020, 30, 659-677.	1.9	3
6	The evolution of high-fidelity social learning. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200090.	2.6	10
7	Comparing fitness and drift explanations of Neanderthal replacement. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190907.	2.6	3
8	Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Computational Biology, 2018, 14, e1006147.	3.2	21
9	Moral externalization may precede, not follow, subjective preferences. Behavioral and Brain Sciences, 2018, 41, e107.	0.7	0
10	Specialized hybrid learners resolve Rogers' paradox about the adaptive value of social learning. Journal of Theoretical Biology, 2017, 414, 8-16.	1.7	7
11	Modelling the spread of innovation in wild birds. Journal of the Royal Society Interface, 2017, 14, 20170215.	3.4	5
12	Cascade Correlation. , 2017, , 171-180.		1
13	Neural implementation of probabilistic models of cognition. Cognitive Systems Research, 2016, 40, 99-113.	2.7	2
14	The effects of nutrition labeling on consumer food choice: a psychological experiment and computational model. Annals of the New York Academy of Sciences, 2014, 1331, 174-185.	3.8	56
15	Understanding social networks requires more than two dimensions. Behavioral and Brain Sciences, 2014, 37, 99-99.	0.7	0
16	A comprehensive model of development on the balance-scale task. Cognitive Systems Research, 2014, 31-32, 1-25.	2.7	4
17	Limitations of the Dirac formalism as a descriptive framework for cognition. Behavioral and Brain Sciences, 2013, 36, 292-293.	0.7	1
18	A constructive neural-network approach to modeling psychological development. Cognitive Development, 2012, 27, 383-400.	1.3	16

THOMAS R SHULTZ

#	Article	IF	CITATIONS
19	Including cognitive biases and distance-based rewards in a connectionist model of complex problem solving. Neural Networks, 2012, 25, 41-56.	5.9	4
20	Cognitive development in humans and developmental robots. Cognitive Development, 2011, 26, 82-85.	1.3	2
21	Understanding Psychological Development in Biological and Artificial Agents: Report on the International Conference on Development and Learning (ICDL 2010). IEEE Transactions on Autonomous Mental Development, 2011, 3, 4-5.	1.6	2
22	Evolution of social learning strategies. , 2010, , .		1
23	Acquisition of Relevance implicatures: A case against a Rationality-based account of conversational implicatures. Journal of Pragmatics, 2010, 42, 2297-2313.	1.5	75
24	Toddlers' transitions on non-verbal false-belief tasks involving a novel location: A constructivist connectionist model. , 2010, , .		1
25	Bootstrapping syntax from morpho-phonology. , 2010, , .		1
26	Toward automatic constructive learning. Behavioral and Brain Sciences, 2008, 31, 344-345.	0.7	0
27	Complex problem solving with reinforcement learning. , 2007, , .		4
28	The Bayesian revolution approaches psychological development. Developmental Science, 2007, 10, 357-364.	2.4	82
29	Rule following and rule use in the balance-scale task. Cognition, 2007, 103, 460-472.	2.2	15
30	Why let networks grow?. , 2007, , 65-98.		11
31	Neural networks discover a near-identity relation to distinguish simple syntactic forms. Minds and Machines, 2006, 16, 107-139.	4.8	14
32	Modeling Age Differences in Infant Category Learning. Infancy, 2004, 5, 153-171.	1.6	28
33	Modeling consciousness. Behavioral and Brain Sciences, 2002, 25, 334-334.	0.7	2
34	Information Theoretic Competitive Learning and Linguistic Rule Acquisition Transactions of the Japanese Society for Artificial Intelligence, 2001, 16, 287-298.	0.1	45
35	Computational Models of Developmental Psychology. , 2001, , 451-476.		8
36	Neural Network Simulation of Infant Familiarization to Artificial Sentences: Rule-Like Behavior Without Explicit Rules and Variables. Infancy, 2001, 2, 501-536.	1.6	28

THOMAS R SHULTZ

#	Article	IF	CITATIONS
37	Knowledge-based cascade-correlation: Using knowledge to speed learning. Connection Science, 2001, 13, 43-72.	3.0	105
38	Artificial grammer learning by infants: an autoâ€associator perspective. Developmental Science, 2000, 3, 442-456.	2.4	22
39	Prototypes and portability in artificial neural network models. Behavioral and Brain Sciences, 2000, 23, 493-494.	0.7	0
40	The Developmental Course of Distance, Time, and Velocity Concepts:A Generative Connectionist Model. Journal of Cognition and Development, 2000, 1, 305-345.	1.3	56
41	Analysis of Knowledge Representations in Cascade Correlation Networks. Behaviormetrika, 1999, 26, 5-28.	1.3	2
42	Development of Children's Seriation: A Connectionist Approach. Connection Science, 1999, 11, 149-186.	3.0	37
43	The learning of first and second person pronouns in English: network models and analysis. Journal of Child Language, 1999, 26, 545-575.	1.2	50
44	A computational analysis of conservation. Developmental Science, 1998, 1, 103-126.	2.4	44
45	Neural Network Modeling of Developmental Effects in Discrimination Shifts. Journal of Experimental Child Psychology, 1998, 71, 235-274.	1.4	40
46	Prospects for automatic recoding of inputs in connectionist learning. Behavioral and Brain Sciences, 1997, 20, 81-82.	0.7	0
47	From neural constructivism to children's cognitive development: Bridging the gap. Behavioral and Brain Sciences, 1997, 20, 571-572.	0.7	3
48	Modeling Cognitive Development on Balance Scale Phenomena. Machine Learning, 1994, 16, 57-86.	5.4	5
49	Modeling cognitive development on balance scale phenomena. Machine Learning, 1994, 16, 57-86.	5.4	192
50	The challenge of representational redescription. Behavioral and Brain Sciences, 1994, 17, 728-729.	0.7	39
51	Choosing a unifying theory for cognitive development. Behavioral and Brain Sciences, 1992, 15, 456-457.	0.7	Ο
52	The rationality of causal inference. Behavioral and Brain Sciences, 1991, 14, 503-504.	0.7	1
53	The Infant's Concept of Agency: The Distinction Between Social and Nonsocial Objects. Journal of Genetic Psychology, 1990, 151, 77-90.	1.2	31
54	Deception and adaptation: Multidisciplinary perspectives on presenting a neutral image. Behavioral and Brain Sciences, 1988, 11, 263-264.	0.7	0

Tuesda	
THOMAS	R Shultz

#	Article	IF	CITATIONS
55	Rules of Causal Attribution. Monographs of the Society for Research in Child Development, 1982, 47, 1.	6.8	271