
Chiara Vitale Brovarone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. Journal of Materials Science: Materials in Medicine, 2015, 26, 115.	3.6	275
2	Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 202.	4.1	261
3	Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomaterialia, 2017, 55, 493-504.	8.3	258
4	Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomaterialia, 2016, 42, 18-32.	8.3	226
5	Threeâ€dimensional glassâ€derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research - Part A, 2011, 97A, 514-535.	4.0	221
6	Bioactive glasses: Special applications outside the skeletal system. Journal of Non-Crystalline Solids, 2016, 432, 15-30.	3.1	221
7	Development of glass–ceramic scaffolds for bone tissue engineering: Characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia, 2007, 3, 199-208.	8.3	203
8	Surface characterization of silver-doped bioactive glass. Biomaterials, 2005, 26, 5111-5119.	11.4	146
9	Bioactive glass/polymer composite scaffolds mimicking bone tissue. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2654-2667.	4.0	115
10	3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal, 2008, 137, 129-136.	12.7	113
11	High strength bioactive glass-ceramic scaffolds for bone regeneration. Journal of Materials Science: Materials in Medicine, 2009, 20, 643-653.	3.6	107
12	In vitro study of manganese-doped bioactive glasses for bone regeneration. Materials Science and Engineering C, 2014, 38, 107-118.	7.3	105
13	Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia, 2020, 108, 22-45.	8.3	103
14	Macroporous bioactive glass-ceramic scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2006, 17, 1069-1078.	3.6	93
15	Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014, 10, 1064-1087.	8.3	87
16	Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Journal of Biomaterials Applications, 2013, 27, 872-890.	2.4	86
17	Surface functionalization of bioactive glasses. Journal of Biomedical Materials Research - Part A, 2009, 90A, 981-992.	4.0	85
18	Glass-ceramics for cancer treatment: So close, or yet so far?. Acta Biomaterialia, 2019, 83, 55-70.	8.3	85

#	Article	IF	CITATIONS
19	Synthesis and characterization of coprecipitation-derived ferrimagnetic glass-ceramic. Journal of Materials Science, 2006, 41, 1029-1037.	3.7	81
20	Biocompatible glass–ceramic materials for bone substitution. Journal of Materials Science: Materials in Medicine, 2008, 19, 471-478.	3.6	81
21	Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Materials Science and Engineering C, 2019, 103, 109764.	7.3	80
22	Micro-CT studies on 3-D bioactive glass–ceramic scaffolds for bone regeneration. Acta Biomaterialia, 2009, 5, 1328-1337.	8.3	79
23	Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomaterialia, 2010, 6, 229-240.	8.3	74
24	3-D high-strength glass–ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Materials Science and Engineering C, 2009, 29, 2055-2062.	7.3	73
25	Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics. Journal of Materials Science: Materials in Medicine, 2009, 20, 75-87.	3.6	70
26	Sprayâ€Dried Mesoporous Mixed Cuâ€Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Liâ€ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1802438.	19.5	70
27	Silver containing bioactive glasses prepared by molten salt ion-exchange. Journal of the European Ceramic Society, 2004, 24, 2935-2942.	5.7	68
28	Mechanical properties and reliability of glass–ceramic foam scaffolds for bone repair. Materials Letters, 2014, 118, 27-30.	2.6	67
29	Biological glass coating on ceramic materials:. Biomaterials, 2001, 22, 2535-2543.	11.4	66
30	Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review. Biomedical Materials (Bristol), 2020, 15, 022001.	3.3	66
31	Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Materials Today Bio, 2020, 5, 100041.	5.5	66
32	The Incorporation of Strontium to Improve Bone-Regeneration Ability of Mesoporous Bioactive Glasses. Materials, 2018, 11, 678.	2.9	64
33	Modelling of the strength–porosity relationship in glass-ceramic foam scaffolds for bone repair. Journal of the European Ceramic Society, 2014, 34, 2663-2673.	5.7	62
34	Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chemical Engineering Journal, 2008, 137, 54-61.	12.7	61
35	Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography. Biomaterials, 2009, 30, 2411-2419.	11.4	61
36	Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. Acta Biomaterialia, 2012, 8, 1125-1136.	8.3	60

#	Article	IF	CITATIONS
37	Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Acta Biomaterialia, 2016, 44, 97-109.	8.3	60
38	Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chemical Engineering Journal, 2018, 340, 103-113.	12.7	60
39	Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. Journal of the European Ceramic Society, 2020, 40, 3689-3697.	5.7	60
40	Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science: Materials in Medicine, 2012, 23, 2369-2380.	3.6	57
41	Macroporous glass-ceramic materials with bioactive properties. Journal of Materials Science: Materials in Medicine, 2004, 15, 209-217.	3.6	56
42	Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Optical Materials Express, 2016, 6, 2040.	3.0	56
43	Collagen and non-collagenous proteins molecular crosstalk in the pathophysiology of osteoporosis. Cytokine and Growth Factor Reviews, 2019, 49, 59-69.	7.2	54
44	Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. Journal of Materials Science: Materials in Medicine, 2009, 20, 741-749.	3.6	52
45	Using porous bioceramic scaffolds to model healthy and osteoporotic bone. Journal of the European Ceramic Society, 2016, 36, 2175-2182.	5.7	52
46	Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5346.	3.6	49
47	Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration. Journal of Materials Science, 2017, 52, 9103-9114.	3.7	49
48	Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties. Journal of Materials Science: Materials in Medicine, 2009, 20, 2197-2205.	3.6	48
49	Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. Journal of Materials Science: Materials in Medicine, 2005, 16, 909-917.	3.6	47
50	Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. Journal of Materials Science: Materials in Medicine, 2009, 20, 733-740.	3.6	47
51	Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. Journal of the European Ceramic Society, 2013, 33, 1553-1565.	5.7	47
52	Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. Journal of Materials Science: Materials in Medicine, 2009, 20, 809-820.	3.6	46
53	Viscous flow sintering of bioactive glass-ceramic composites toughened by zirconia particles. Journal of the European Ceramic Society, 2003, 23, 675-683.	5.7	42
54	Double-layer glass-ceramic coatings on Ti6Al4V for dental implants. Journal of the European Ceramic Society, 2004, 24, 2699-2705.	5.7	42

#	Article	IF	CITATIONS
55	Response of human bone marrow stromal cells to a resorbable P2O5–SiO2–CaO–MgO–Na2O–K2O phosphate glass ceramic for tissue engineering applications. Acta Biomaterialia, 2010, 6, 598-606.	8.3	42
56	Mesoporous Bioactive Glass as a Multifunctional System for Bone Regeneration and Controlled Drug Release. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 12-21.	1.6	42
57	Bioceramics in ophthalmology. Acta Biomaterialia, 2014, 10, 3372-3397.	8.3	42
58	Composite Films of Gelatin and Hydroxyapatite/Bioactive Glass for Tissue-Engineering Applications. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1207-1226.	3.5	41
59	Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceramics International, 2016, 42, 1482-1491.	4.8	41
60	SBA-15 ordered mesoporous silica inside a bioactive glass–ceramic scaffold for local drug delivery. Journal of Materials Science: Materials in Medicine, 2008, 19, 3303-3310.	3.6	40
61	Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2009, 20, 2189-2195.	3.6	40
62	Characterisation of Bioglass based foams developed via replication of natural marine sponges. Advances in Applied Ceramics, 2015, 114, S56-S62.	1.1	40
63	Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review. Bioengineering, 2017, 4, 15.	3.5	39
64	Collagen Hybrid Formulations for the 3D Printing of Nanostructured Bone Scaffolds: An Optimized Genipin-Crosslinking Strategy. Nanomaterials, 2020, 10, 1681.	4.1	39
65	Ultrasonic Characterisation of Porous Biomaterials Across Different Frequencies. Strain, 2009, 45, 34-44.	2.4	38
66	Zirconia-containing radiopaque mesoporous bioactive glasses. Materials Letters, 2014, 130, 281-284.	2.6	38
67	Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials. Materials, 2018, 11, 700.	2.9	38
68	Novel phosphate glasses with different amounts of TiO2 for biomedical applications. Materials Science and Engineering C, 2011, 31, 434-442.	7.3	36
69	Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. Materials Science and Engineering C, 2013, 33, 1530-1538.	7.3	36
70	Bioactivity and Mechanical Stability of 45S5 Bioactive Glass Scaffolds Based on Natural Marine Sponges. Annals of Biomedical Engineering, 2016, 44, 1881-1893.	2.5	35
71	Resorbable Glass–Ceramic Phosphate-based Scaffolds for Bone Tissue Engineering: Synthesis, Properties, and <i>In vitro</i> Effects on Human Marrow Stromal Cells. Journal of Biomaterials Applications, 2011, 26, 465-489.	2.4	34
72	Fluoroapatite glass-ceramic coatings on alumina: structural, mechanical and biological characterisation. Biomaterials, 2002, 23, 3395-3403.	11.4	33

#	Article	IF	CITATIONS
73	Synthesis and characterisation of bioactive and antibacterial glass–ceramic Part 1 – Microstructure, properties and biological behaviour. Advances in Applied Ceramics, 2008, 107, 234-244.	1.1	33
74	Feasibility and Tailoring of Bioactive Glass-ceramic Scaffolds with Gradient of Porosity for Bone Grafting. Journal of Biomaterials Applications, 2010, 24, 693-712.	2.4	33
75	Feasibility of glass–ceramic coatings on alumina prosthetic implants by airbrush spraying method. Ceramics International, 2015, 41, 2150-2159.	4.8	33
76	Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: a proof-of-concept study. Journal of Materials Science, 2017, 52, 9115-9128.	3.7	33
77	Multifunctional Copper-Containing Mesoporous Glass Nanoparticles as Antibacterial and Proangiogenic Agents for Chronic Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 246.	4.1	33
78	Graded coatings on ceramic substrates for biomedical applications. Journal of the European Ceramic Society, 2001, 21, 2855-2862.	5.7	32
79	Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic. Part I: Morphological, mechanical and calorimetric characterization. Journal of Biomaterials Applications, 2014, 29, 254-267.	2.4	30
80	Antibacterial Bioglassâ€Derived Scaffolds: Innovative Synthesis Approach and Characterization. International Journal of Applied Glass Science, 2016, 7, 238-247.	2.0	30
81	Micro-CT based finite element models for elastic properties of glass–ceramic scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 248-255.	3.1	30
82	Novel resorbable glass-ceramic scaffolds for hard tissue engineering: From the parent phosphate glass to its bone-like macroporous derivatives. Journal of Biomaterials Applications, 2014, 28, 1287-1303.	2.4	29
83	Uniform Surface Modification of 3D Bioglass®-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability. Frontiers in Bioengineering and Biotechnology, 2015, 3, 177.	4.1	29
84	Engineered porous scaffolds for periprosthetic infection prevention. Materials Science and Engineering C, 2016, 68, 701-715.	7.3	29
85	Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation. Journal of the European Ceramic Society, 2016, 36, 2403-2409.	5.7	27
86	An aerosol-spray-assisted approach to produce mesoporous bioactive glass microspheres under mild acidic aqueous conditions. Materials Letters, 2017, 190, 111-114.	2.6	24
87	Newly-designed collagen/polyurethane bioartificial blend as coating on bioactive glass-ceramics for bone tissue engineering applications. Materials Science and Engineering C, 2019, 96, 218-233.	7.3	24
88	In Vitro Assessment of Bioactive Glass Coatings on Alumina/Zirconia Composite Implants for Potential Use in Prosthetic Applications. International Journal of Molecular Sciences, 2019, 20, 722.	4.1	23
89	Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. Materials, 2022, 15, 1724.	2.9	23
90	Bioactive glass functionalized with alkaline phosphatase stimulates bone extracellular matrix deposition and calcification in vitro. Applied Surface Science, 2014, 313, 372-381.	6.1	22

#	Article	IF	CITATIONS
91	Wollastonite-containing bioceramic coatings on alumina substrates: Design considerations and mechanical modelling. Ceramics International, 2015, 41, 11464-11470.	4.8	22
92	Strontium-releasing mesoporous bioactive glasses with anti-adhesive zwitterionic surface as advanced biomaterials for bone tissue regeneration. Journal of Colloid and Interface Science, 2020, 563, 92-103.	9.4	22
93	SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. Journal of Materials Science: Materials in Medicine, 2005, 16, 863-871.	3.6	21
94	Shock Waves Induce Activity of Human Osteoblast-Like Cells in Bioactive Scaffolds. Journal of Trauma, 2010, 68, 1439-1444.	2.3	20
95	Production and Physicochemical Characterization of Cu-Doped Silicate Bioceramic Scaffolds. Materials, 2018, 11, 1524.	2.9	20
96	Synthesis and characterisation of bioactive and antibacterial glass-ceramic Part 2 – plasma spray coatings on metallic substrates. Advances in Applied Ceramics, 2008, 107, 245-253.	1.1	19
97	Resorbable hollow phosphate glass fibres as controlled release systems for biomedical applications. Materials Letters, 2013, 99, 125-127.	2.6	19
98	Novel multifunctional strontium-copper co-substituted mesoporous bioactive particles. Materials Letters, 2018, 223, 37-40.	2.6	19
99	Na2O-CaO-SiO2 glass-ceramic matrix biocomposites. Journal of Materials Science, 2001, 36, 2801-2807.	3.7	18
100	Biocompatibility and Antibacterial Effect of Silver Doped 3D-Glass-Ceramic Scaffolds for Bone Grafting. Journal of Biomaterials Applications, 2011, 25, 595-617.	2.4	18
101	Bioresorbable glass effect on the physico-chemical properties of bilayered scaffolds for osteochondral regeneration. Materials Letters, 2012, 89, 74-76.	2.6	18
102	Al-MCM-41 inside a glass–ceramic scaffold: A meso–macroporous system for acid catalysis. Journal of the European Ceramic Society, 2013, 33, 1535-1543.	5.7	18
103	Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering. Journal of Biomaterials Applications, 2014, 29, 728-736.	2.4	18
104	Physico-chemical and biological studies on three-dimensional porous silk/spray-dried mesoporous bioactive glass scaffolds. Ceramics International, 2016, 42, 13761-13772.	4.8	18
105	Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1986-1997.	2.7	18
106	Quantifying the micro-architectural similarity of bioceramic scaffolds to bone. Ceramics International, 2017, 43, 9443-9450.	4.8	18
107	Antibiotic loading on bioactive glasses and glass-ceramics: An approach to surface modification. Journal of Biomaterials Applications, 2013, 28, 308-319.	2.4	17
108	Bioactive Glass-Ceramic Foam Scaffolds from â€~Inorganic Gel Casting' and Sinter-Crystallization. Materials, 2018, 11, 349.	2.9	17

#	Article	IF	CITATIONS
109	In Vivo Validation of Spray-Dried Mesoporous Bioactive Glass Microspheres Acting as Prolonged Local Release Systems for BMP-2 to Support Bone Regeneration. Pharmaceutics, 2020, 12, 823.	4.5	17
110	Sr-Containing Mesoporous Bioactive Glasses Bio-Functionalized with Recombinant ICOS-Fc: An In Vitro Study. Nanomaterials, 2021, 11, 321.	4.1	17
111	Coatings on Al2O3 by bioactive glass-ceramics. Acta Materialia, 2000, 48, 4667-4671.	7.9	16
112	Surface functionalization of 3D glass–ceramic porous scaffolds for enhanced mineralization in vitro. Applied Surface Science, 2013, 271, 412-420.	6.1	16
113	Monodisperse Mesoporous Silica Spheres Inside a Bioactive Macroporous Glass–Ceramic Scaffold. Advanced Engineering Materials, 2010, 12, B256.	3.5	15
114	Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone. Key Engineering Materials, 0, 631, 184-189.	0.4	15
115	PEG-Coated Large Mesoporous Silicas as Smart Platform for Protein Delivery and Their Use in a Collagen-Based Formulation for 3D Printing. International Journal of Molecular Sciences, 2021, 22, 1718.	4.1	15
116	Micromechanics of bioresorbable porous CEL2 glass ceramic scaffolds for bone tissue engineering. Advances in Applied Ceramics, 2008, 107, 277-286.	1.1	14
117	Effects of TiO ₂ â€containing phosphate glasses on solubility and <i>in vitro</i> biocompatibility. Journal of Biomedical Materials Research - Part A, 2011, 99A, 295-306.	4.0	13
118	Ceramics for oculo-orbital surgery. Ceramics International, 2015, 41, 5213-5231.	4.8	12
119	<p>Silver Decorated Mesoporous Carbons for the Treatment of Acute and Chronic Wounds, in a Tissue Regeneration Context</p> . International Journal of Nanomedicine, 2019, Volume 14, 10147-10164.	6.7	12
120	Fluoroapatite glass-ceramic coating on alumina: Surface behavior with biological fluids. Journal of Biomedical Materials Research - Part A, 2003, 66A, 615-621.	4.0	11
121	Novel systems for tailored neurotrophic factor release based on hydrogel and resorbable glass hollow fibers. Materials Science and Engineering C, 2014, 36, 25-32.	7.3	11
122	Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses. Advances in Applied Ceramics, 2015, 114, S48-S55.	1.1	11
123	Bone Structural Similarity Score: A Multiparametric Tool to Match Properties of Biomimetic Bone Substitutes with their Target Tissues. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e277-e289.	1.6	10
124	A shelf-life study of silica- and carbon-based mesoporous materials. Journal of Industrial and Engineering Chemistry, 2021, 101, 205-213.	5.8	10
125	Polyelectrolyte-Coated Mesoporous Bioactive Glasses via Layer-by-Layer Deposition for Sustained Co-Delivery of Therapeutic lons and Drugs. Pharmaceutics, 2021, 13, 1952.	4.5	10
126	Spray-dried mesoporous silica spheres functionalized with carboxylic groups. Materials Letters, 2013, 108, 118-121.	2.6	9

#	Article	IF	CITATIONS
127	Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Materials Science and Engineering C, 2016, 67, 570-580.	7.3	9
128	Glazing of alumina by a fluoroapatite-containing glass-ceramic. Journal of Materials Science, 2005, 40, 1209-1215.	3.7	8
129	Novel Bone-Like Porous Glass Coatings on Al ₂ O ₃ Prosthetic Substrates. Key Engineering Materials, 2014, 631, 236-240.	0.4	7
130	Trabecular coating on curved alumina substrates using a novel bioactive and strong glass-ceramic. Biomedical Glasses, 2015, 1, .	2.4	7
131	Aerosol-assisted synthesis of mesoporous aluminosilicate microspheres: the effect of the aluminum precursor. New Journal of Chemistry, 2016, 40, 4420-4427.	2.8	7
132	Sintering effects of bioactive glass incorporation in tricalcium phosphate scaffolds. Materials Letters, 2020, 274, 128010.	2.6	7
133	Spine-Ghost: A New Bioactive Cement for Vertebroplasty. Key Engineering Materials, 2014, 631, 43-47.	0.4	6
134	Bioactive glass and glass–ceramic foam scaffolds for bone tissue restoration. , 2014, , 213-248.		6
135	Analysis of multiple protein detection methods in human osteoporotic bone extracellular matrix: From literature to practice. Bone, 2020, 137, 115363.	2.9	6
136	Protocol of Co-Culture of Human Osteoblasts and Osteoclasts to Test Biomaterials for Bone Tissue Engineering. Methods and Protocols, 2022, 5, 8.	2.0	6
137	Preparation and investigation of a glass in the system Al2O3–SiO2–CaO for dental applications. Materials Letters, 2006, 60, 3045-3047.	2.6	5
138	Surface Functionalization of Biomaterials with Alkaline Phosphatase. Key Engineering Materials, 2007, 361-363, 593-596.	0.4	5
139	Microstructural characterization and robust comparison of ceramic porous orbital implants. Journal of the European Ceramic Society, 2018, 38, 2988-2993.	5.7	5
140	Imaging Techniques for the Assessment of the Bone Osteoporosis-Induced Variations with Particular Focus on Micro-CT Potential. Applied Sciences (Switzerland), 2020, 10, 8939.	2.5	5
141	3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds. Materials, 2021, 14, 6720.	2.9	5
142	Bioresorbable Phosphate Scaffolds for Bone Regeneration. Key Engineering Materials, 2007, 361-363, 241-244.	0.4	4
143	Tailoring of Bone Scaffold Properties Using Silicate/Phosphate Glass Mixtures. Key Engineering Materials, 2014, 631, 283-288.	0.4	4
144	Assessment of Collagen-Based Nanostructured Biomimetic Systems with a Co-Culture of Human Bone-Derived Cells. Cells, 2022, 11, 26.	4.1	3

#	Article	IF	CITATIONS
145	Glass-Ceramic Scaffolds and Shock Waves Effect on Cells Migration. Key Engineering Materials, 2008, 361-363, 233-236.	0.4	2
146	Bioactive Glass-Ceramics Coatings on Alumina. Key Engineering Materials, 2000, 192-195, 123-126.	0.4	1
147	Phosphate glass fibers for optical amplifiers and biomedical applications. , 2017, , .		1
148	Glass-Ceramics as Coatings for Prostheses. Key Engineering Materials, 2001, 192-195, 279-282.	0.4	0
149	Glass-Ceramic Matrix/ZrO2 Particle Biocomposites. , 2005, , 146-151.		0
150	Ultrasonic Characterization of Porous Biomaterials Across Different Frequencies. , 2007, , 505-506.		0