Sheng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8334712/publications.pdf

Version: 2024-02-01

471509 752698 2,993 20 17 20 citations h-index g-index papers 21 21 21 4415 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Proton transport through one-atom-thick crystals. Nature, 2014, 516, 227-230.	27.8	668
2	Anomalously low dielectric constant of confined water. Science, 2018, 360, 1339-1342.	12.6	627
3	Size effect in ion transport through angstrom-scale slits. Science, 2017, 358, 511-513.	12.6	418
4	Sieving hydrogen isotopes through two-dimensional crystals. Science, 2016, 351, 68-70.	12.6	247
5	Complete steric exclusion of ions and proton transport through confined monolayer water. Science, 2019, 363, 145-148.	12.6	207
6	Ballistic molecular transport through two-dimensional channels. Nature, 2018, 558, 420-424.	27.8	139
7	Indirect excitons in van der Waals heterostructures at room temperature. Nature Communications, 2018, 9, 1895.	12.8	130
8	Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nature Communications, 2017, 8, 15215.	12.8	119
9	Edge currents shunt the insulating bulk in gapped graphene. Nature Communications, 2017, 8, 14552.	12.8	77
10	Indirect Excitons and Trions in MoSe ₂ /WSe ₂ van der Waals Heterostructures. Nano Letters, 2020, 20, 1869-1875.	9.1	63
11	Giant photoeffect in proton transport through graphene membranes. Nature Nanotechnology, 2018, 13, 300-303.	31.5	59
12	Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nature Nanotechnology, 2018, 13, 468-472.	31.5	45
13	Creating Fluorineâ€Doped MoS ₂ Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods, 2021, 5, e2100612.	8.6	44
14	Blue Energy Conversion from Holey-Graphene-like Membranes with a High Density of Subnanometer Pores. Nano Letters, 2020, 20, 8634-8639.	9.1	42
15	Out-of-equilibrium criticalities in graphene superlattices. Science, 2022, 375, 430-433.	12.6	34
16	Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nature Nanotechnology, 2019, 14, 756-761.	31.5	27
17	Visualizing Piezoelectricity on 2D Crystals Nanobubbles. Advanced Functional Materials, 2021, 31, 2005053.	14.9	23
18	Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99, 233110.	3.3	16

Sheng Hu

#	Article	lF	CITATIONS
19	One-Atom-Thick Crystals as Emerging Proton Sieves. Journal of Physical Chemistry Letters, 2021, 12, 12376-12383.	4.6	5
20	Cation-Gated Ion Transport at Nanometer Scale for Tunable Power Generation. Journal of Physical Chemistry Letters, 2022, 13, 2625-2631.	4.6	3