Sloan Coats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/833413/publications.pdf Version: 2024-02-01

SLOAN COATS

#	Article	IF	CITATIONS
1	Global warming and 21st century drying. Climate Dynamics, 2014, 43, 2607-2627.	3.8	782
2	Projected drought risk in 1.5°C and 2°C warmer climates. Geophysical Research Letters, 2017, 44, 7419-7428.	4.0	227
3	North American megadroughts in the Common Era: reconstructions and simulations. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 411-432.	8.1	123
4	Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?. Geophysical Research Letters, 2017, 44, 9928-9937.	4.0	112
5	Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations. Geophysical Research Letters, 2013, 40, 4927-4932.	4.0	68
6	Are Simulated Megadroughts in the North American Southwest Forced?*. Journal of Climate, 2015, 28, 124-142.	3.2	68
7	Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nature Communications, 2021, 12, 212.	12.8	58
8	Internal oceanâ€ a tmosphere variability drives megadroughts in Western North America. Geophysical Research Letters, 2016, 43, 9886-9894.	4.0	56
9	Climate Variability, Volcanic Forcing, and Last Millennium Hydroclimate Extremes. Journal of Climate, 2018, 31, 4309-4327.	3.2	47
10	A Robust Null Hypothesis for the Potential Causes of Megadrought in Western North America. Journal of Climate, 2018, 31, 3-24.	3.2	47
11	North American Pancontinental Droughts in Model Simulations of the Last Millennium*. Journal of Climate, 2015, 28, 2025-2043.	3.2	46
12	Precipitation, Temperature, and Teleconnection Signals across the Combined North American, Monsoon Asia, and Old World Drought Atlases. Journal of Climate, 2017, 30, 7141-7155.	3.2	46
13	The Value of Initial Condition Large Ensembles to Robust Adaptation Decisionâ€Making. Earth's Future, 2020, 8, e2012EF001610.	6.3	45
14	Twenty-first century hydroclimate: A continually changing baseline, with more frequent extremes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2108124119.	7.1	42
15	Exacerbation of the 2013–2016 Pan aribbean Drought by Anthropogenic Warming. Geophysical Research Letters, 2018, 45, 10619-10626.	4.0	39
16	The improbable but unexceptional occurrence of megadrought clustering in the American West during the Medieval Climate Anomaly. Environmental Research Letters, 2016, 11, 074025.	5.2	34
17	Stormquakes. Geophysical Research Letters, 2019, 46, 12909-12918.	4.0	29
18	A Role for the Equatorial Undercurrent in the Ocean Dynamical Thermostat. Journal of Climate, 2018, 31, 6245-6261.	3.2	27

SLOAN COATS

#	Article	IF	CITATIONS
19	Winterâ€toâ€summer precipitation phasing in southwestern North America: A multicentury perspective from paleoclimatic modelâ€data comparisons. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8052-8064.	3.3	23
20	The challenge of accurately quantifying future megadrought risk in the American Southwest. Geophysical Research Letters, 2016, 43, 9225-9233.	4.0	21
21	Centennialâ€Scale Shifts in Storm Frequency Captured in Paleohurricane Records From The Bahamas Arise Predominantly From Random Variability. Geophysical Research Letters, 2021, 48, e2020GL091145.	4.0	20
22	CO ₂ -plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environmental Research Letters, 2021, 16, 034018.	5.2	20
23	Atlanticâ€Pacific Gradients Drive Last Millennium Hydroclimate Variability in Mesoamerica. Geophysical Research Letters, 2020, 47, e2020GL088061.	4.0	18
24	Cold Tropical Pacific Sea Surface Temperatures During the Late Sixteenth entury North American Megadrought. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,307.	3.3	15
25	Coupled Model Biases Breed Spurious Lowâ€Frequency Variability in the Tropical Pacific Ocean. Geophysical Research Letters, 2018, 45, 10,609.	4.0	13
26	Plant wax evidence for precipitation and vegetation change from a coastal sinkhole lake in the Bahamas spanning the last 3000†years. Organic Geochemistry, 2020, 150, 104120.	1.8	13
27	Paleoclimate Constraints on the Spatiotemporal Character of Past and Future Droughts. Journal of Climate, 2020, 33, 9883-9903.	3.2	13
28	Does Regional Hydroclimate Change Scale Linearly With Global Warming?. Geophysical Research Letters, 2021, 48, e2021GL095127.	4.0	8
29	Oceanâ€Atmosphere Trajectories of Extended Drought in Southwestern North America. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8953-8971.	3.3	6
30	Hydroclimate Dipole Drives Multi entennial Variability in the Western Tropical North Atlantic Margin During the Middle and Late Holocene. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004184.	2.9	6