
Julie K Schwarz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8333657/publications.pdf Version: 2024-02-01

LILLE K SCHWARZ

#	Article	IF	CITATIONS
1	The Chk1 Protein Kinase and the Cdc25C Regulatory Pathways Are Targets of the Anticancer Agent UCN-01. Journal of Biological Chemistry, 2000, 275, 5600-5605.	3.4	464
2	A MicroRNA Expression Signature for Cervical Cancer Prognosis. Cancer Research, 2010, 70, 1441-1448.	0.9	294
3	A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecologic Oncology, 2009, 114, 457-464.	1.4	262
4	Association of Posttherapy Positron Emission Tomography With Tumor Response and Survival in Cervical Carcinoma. JAMA - Journal of the American Medical Association, 2007, 298, 2289.	7.4	260
5	Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell, 2020, 37, 289-307.e9.	16.8	252
6	Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Science Translational Medicine, 2019, 11, .	12.4	148
7	Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 71, 180-186.	0.8	121
8	Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Molecular Cancer Research, 2003, 1, 598-609.	3.4	105
9	Neutrophils promote tumor resistance to radiation therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18584-18589.	7.1	102
10	The Role of ¹⁸ F-FDG PET in Assessing Therapy Response in Cancer of the Cervix and Ovaries. Journal of Nuclear Medicine, 2009, 50, 64S-73S.	5.0	97
11	Consensus statement for brachytherapy for the treatment of medically inoperable endometrial cancer. Brachytherapy, 2015, 14, 587-599.	0.5	93
12	Pathway-Specific Analysis of Gene Expression Data Identifies the PI3K/Akt Pathway as a Novel Therapeutic Target in Cervical Cancer. Clinical Cancer Research, 2012, 18, 1464-1471.	7.0	90
13	Metabolic Response on Post-therapy FDG-PET Predicts Patterns of Failure After Radiotherapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, 185-190.	0.8	82
14	Treatment Approach, Surveillance, and Outcome of Well-Differentiated Thyroid Cancer in Childhood and Adolescence. Thyroid, 2014, 24, 1121-1126.	4.5	79
15	The Future of Radiobiology. Journal of the National Cancer Institute, 2018, 110, 329-340.	6.3	76
16	Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nature Communications, 2021, 12, 5558.	12.8	75
17	Radioresistant Cervical Cancers Are Sensitive to Inhibition of Glycolysis and Redox Metabolism. Cancer Research, 2018, 78, 1392-1403.	0.9	69
18	Therapy-Induced Senescence Drives Bone Loss. Cancer Research, 2020, 80, 1171-1182.	0.9	69

JULIE K SCHWARZ

#	Article	IF	CITATIONS
19	AKT Inhibitors Promote Cell Death in Cervical Cancer through Disruption of mTOR Signaling and Glucose Uptake. PLoS ONE, 2014, 9, e92948.	2.5	68
20	Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers, 2020, 12, 2916.	3.7	63
21	<i>BRAF</i> mutation is not predictive of longâ€ŧerm outcome in papillary thyroid carcinoma. Cancer Medicine, 2015, 4, 791-799.	2.8	58
22	Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment. Nature Communications, 2021, 12, 5086.	12.8	58
23	Intensity Modulated Radiation Therapy and Image-Guided Adapted Brachytherapy for CervixÂCancer. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1088-1097.	0.8	57
24	FIGO 2018 staging criteria for cervical cancer: Impact on stage migration and survival. Gynecologic Oncology, 2020, 157, 639-643.	1.4	57
25	18-F-Fluorodeoxyglucose–Positron Emission Tomography Evaluation of Early Metabolic Response During Radiation Therapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1502-1507.	0.8	53
26	Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget, 2014, 5, 11620-11630.	1.8	53
27	Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy. International Iournal of Radiation Oncology Biology Physics. 2014. 90. 794-801.	0.8	52
28	Serum squamous cell carcinoma antigen as an early indicator of response during therapy of cervical cancer. British Journal of Cancer, 2018, 118, 72-78.	6.4	46
29	Tumor volume and subvolume concordance between FDGâ€₽ET/CT and diffusionâ€weighted MRI for squamous cell carcinoma of the cervix. Journal of Magnetic Resonance Imaging, 2013, 37, 431-434.	3.4	44
30	Gradational Threat Postures by the Red-Backed Salamander. Journal of Herpetology, 1991, 25, 112.	0.5	38
31	Molecular Imaging of Very Late Antigen–4 (α ₄ β ₁ Integrin) in the Premetastatic Niche. Journal of Nuclear Medicine, 2012, 53, 779-786.	5.0	37
32	Intensity modulated radiation therapy for recurrent ovarian cancer refractory to chemotherapy. Gynecologic Oncology, 2016, 141, 134-139.	1.4	37
33	Results of an early safety analysis of a study of the combination of pembrolizumab and pelvic chemoradiation in locally advanced cervical cancer. Cancer, 2020, 126, 4948-4956.	4.1	37
34	Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1483-1494.	0.8	37
35	Brachytherapy Is Associated With Improved Survival in Inoperable Stage I Endometrial Adenocarcinoma: A Population-Based Analysis. International Journal of Radiation Oncology Biology Physics, 2015, 93, 649-657.	0.8	34
36	Improved survival with definitive chemoradiation compared to definitive radiation alone in squamous cell carcinoma of the vulva: A review of the National Cancer Database. Gynecologic Oncology, 2017, 146, 572-579.	1.4	34

Julie K Schwarz

#	Article	IF	CITATIONS
37	Intensity modulated radiation therapy for squamous cell carcinoma of the vulva: Treatment technique and outcomes. Advances in Radiation Oncology, 2017, 2, 148-158.	1.2	33
38	PET/MRI Evaluation of Gynecologic Malignancies and Prostate Cancer. Seminars in Nuclear Medicine, 2015, 45, 293-303.	4.6	32
39	Medically inoperable endometrial cancer in patients with a high body mass index (BMI): Patterns of failure after 3-D image-based high dose rate (HDR) brachytherapy. Radiotherapy and Oncology, 2016, 118, 167-172.	0.6	32
40	Prognostic Significance of p16 Expression in Advanced Cervical Cancer Treated With Definitive Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, 153-157.	0.8	28
41	Phase I Trial of Stereotactic MRI-Guided Online Adaptive Radiation Therapy (SMART) for the Treatment of Oligometastatic Ovarian Cancer. International Journal of Radiation Oncology Biology Physics, 2022, 112, 379-389.	0.8	28
42	Patterns of care and survival outcomes after treatment for uveal melanoma in the post-coms era (2004-2013): a surveillance, epidemiology, and end results analysis. Journal of Contemporary Brachytherapy, 2017, 5, 453-465.	0.9	27
43	Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Seminars in Radiation Oncology, 2019, 29, 33-41.	2.2	26
44	Decreased local immune response and retained HPV gene expression during chemoradiotherapy are associated with treatment resistance and death from cervical cancer. International Journal of Cancer, 2020, 146, 2047-2058.	5.1	26
45	Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Molecular Cancer Therapeutics, 2020, 19, 2465-2475.	4.1	25
46	Adjuvant radiotherapy in Stage II endometrial carcinoma: Is brachytherapy alone sufficient for local control?. Brachytherapy, 2015, 14, 427-432.	0.5	19
47	Multi-institutional Analysis of Vaginal Brachytherapy Alone for Women With Stage II Endometrial Carcinoma. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1069-1077.	0.8	19
48	Patterns of care and outcomes of proton and eye plaque brachytherapy for uveal melanoma: Review of the National Cancer Database. Brachytherapy, 2017, 16, 1225-1231.	0.5	18
49	Brachytherapy and survival in small cell cancer of the cervix and uterus. Brachytherapy, 2019, 18, 163-170.	0.5	16
50	Prospective Phase I-II Trial of Helical Tomotherapy With or Without Chemotherapy for Postoperative Cervical Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1258-1263.	0.8	15
51	Outpatient-based high-dose-rate interstitial brachytherapy for gynecologic malignancies. Brachytherapy, 2015, 14, 231-237.	0.5	15
52	Standardized Uptake Value for 18F-Fluorodeoxyglucose Is a Marker of Inflammatory State and Immune Infiltrate in Cervical Cancer. Clinical Cancer Research, 2021, 27, 4245-4255.	7.0	15
53	Clinical implementation of multisequence MRIâ€based adaptive intracavitary brachytherapy for cervix cancer. Journal of Applied Clinical Medical Physics, 2016, 17, 121-131.	1.9	14
54	Integrating imaging and RNA-seq improves outcome prediction in cervical cancer. Journal of Clinical Investigation, 2021, 131, .	8.2	14

JULIE K SCHWARZ

#	Article	IF	CITATIONS
55	Clinical outcomes and differential effects of PI3K pathway mutation in obese versus non-obese patients with cervical cancer. Oncotarget, 2018, 9, 4061-4073.	1.8	14
56	Genomic Characterization and Therapeutic Targeting of HPV Undetected Cervical Carcinomas. Cancers, 2021, 13, 4551.	3.7	13
57	Association of post-treatment positron emission tomography with locoregional control and survival after radiation therapy for squamous cell carcinoma of the vulva. Radiotherapy and Oncology, 2017, 122, 445-451.	0.6	12
58	Spatial relationship of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography and magnetic resonance diffusion imaging metrics in cervical cancer. EJNMMI Research, 2018, 8, 52.	2.5	11
59	Alteration of Cellular Reduction Potential Will Change 64Cu-ATSM Signal With or Without Hypoxia. Journal of Nuclear Medicine, 2020, 61, 427-432.	5.0	11
60	Which patients with inoperable vulvar cancer may benefit from brachytherapy in addition to external beam radiation? A Surveillance, Epidemiology, and End Results analysis. Brachytherapy, 2017, 16, 831-840.	0.5	10
61	Clinical outcomes after isolated pelvic failure in cervical cancer patients treated with definitive radiation. Gynecologic Oncology, 2019, 153, 530-534.	1.4	10
62	Long-term outcomes of intensity-modulated radiation therapy (IMRT) and high dose rate brachytherapy as adjuvant therapy after radical hysterectomy for cervical cancer. International Journal of Gynecological Cancer, 2020, 30, 1157-1161.	2.5	10
63	SERPINB3 (SCCA1) inhibits cathepsin L and lysoptosis, protecting cervical cancer cells from chemoradiation. Communications Biology, 2022, 5, 46.	4.4	10
64	Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer. Brachytherapy, 2015, 14, 481-489.	0.5	9
65	An analysis of appropriate delivery of postoperative radiation therapy for endometrial cancer using the RAND/UCLA Appropriateness Method: Executive summary. Advances in Radiation Oncology, 2016, 1, 26-34.	1.2	8
66	Survival of Cervical Cancer Patients Presenting with Occult Supraclavicular Metastases Detected by FDG-Positron Emission Tomography/CT: Impact of Disease Extent and Treatment. Gynecologic and Obstetric Investigation, 2018, 83, 83-89.	1.6	8
67	Impact of tumor histology on detection of pelvic and para-aortic nodal metastasis with ¹⁸ F-fluorodeoxyglucose–positron emission tomography in stage IB cervical cancer. International Journal of Gynecological Cancer, 2019, 29, 1351-1354.	2.5	8
68	In vitro chemoresponse to cisplatin and outcomes in cervical cancer. Gynecologic Oncology, 2013, 130, 188-191.	1.4	7
69	A molecular approach combined with American Thyroid Association classification better stratifies recurrence risk of classic histology papillary thyroid cancer. Cancer Medicine, 2019, 8, 437-446.	2.8	7
70	Concurrent chemoradiation for cervical cancer: Comparison of LDR and HDR brachytherapy. Brachytherapy, 2019, 18, 353-360.	0.5	6
71	MRI safety risks in the obese: The case of the disposable lighter stored in the pannus. Radiology Case Reports, 2019, 14, 634-638.	0.6	5
72	HPV-EM: an accurate HPV detection and genotyping EM algorithm. Scientific Reports, 2020, 10, 14340.	3.3	3

JULIE K SCHWARZ

#	ARTICLE	IF	CITATIONS
73	Targeting Tumor Metabolism to Overcome Radioresistance. Cancer Drug Discovery and Development, 2020, , 219-263.	0.4	2
74	Early posttherapy clearance of human papillomavirus and treatment response in cervical carcinoma. Cancer, 2020, 126, 4168-4176.	4.1	2
75	Intracavitary Brachytherapy for Gynecologic Malignancies: Applications and Innovations. Missouri Medicine, 2015, 112, 366-72.	0.3	2
76	Translating Imaging Results into Tumor Biology: FDG-PET and The Response to Chemoradiation in Human Cervical Carcinoma. Radiation Research, 2013, 180, 223-230.	1.5	1
77	False-Positive Rate of Posttherapy Positron Emission Tomography in Cervical Cancer—Reply. JAMA - Journal of the American Medical Association, 2008, 299, 898.	7.4	0
78	(P044) Toxicity of Post-Operative Intensity Modulated Radiation Therapy in Patients With Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, E27.	0.8	0
79	(P23) Toxicity of Post-Operative Intensity Modulated Radiation Therapy in Patients With Endometrial Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, E30.	0.8	0
80	In Regard to Salama etÂal. International Journal of Radiation Oncology Biology Physics, 2021, 110, 918-919.	0.8	0
81	The impact of tumor size and histology on local control when utilizing high-dose-rate interstitial brachytherapy for gynecologic malignancies. Gynecologic Oncology, 2022, , .	1.4	0