Jiahui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8333170/publications.pdf

Version: 2024-02-01

24 2,483 16 23
papers citations h-index g-index

27 27 27 3487 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An Expanded Palette of Genetically Encoded Ca ²⁺ Indicators. Science, 2011, 333, 1888-1891.	12.6	1,178
2	Improved Orange and Red Ca ²⁺ Indicators and Photophysical Considerations for Optogenetic Applications. ACS Chemical Neuroscience, 2013, 4, 963-972.	3.5	218
3	A genetically encoded near-infrared fluorescent calcium ion indicator. Nature Methods, 2019, 16, 171-174.	19.0	154
4	Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochemical Journal, 2014, 464, 13-22.	3.7	132
5	Palmitoylation is the Switch that Assigns Calnexin to Quality Control or ER Calcium Signaling. Journal of Cell Science, 2013, 126, 3893-903.	2.0	125
6	A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. Nature Communications, 2014, 5, 5262.	12.8	75
7	Live imaging of mRNA using RNA-stabilized fluorogenic proteins. Nature Methods, 2019, 16, 862-865.	19.0	71
8	Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS ONE, 2017, 12, e0171257.	2.5	70
9	Genetically Encoded Glutamate Indicators with Altered Color and Topology. ACS Chemical Biology, 2018, 13, 1832-1837.	3.4	67
10	Fluorophoreâ€Promoted RNA Folding and Photostability Enables Imaging of Single Broccoliâ€√agged mRNAs in Live Mammalian Cells. Angewandte Chemie - International Edition, 2020, 59, 4511-4518.	13.8	66
11	Understanding the Fluorescence Change in Red Genetically Encoded Calcium Ion Indicators. Biophysical Journal, 2019, 116, 1873-1886.	0.5	54
12	A Bioluminescent Ca ²⁺ Indicator Based on a Topological Variant of GCaMP6s. ChemBioChem, 2019, 20, 516-520.	2.6	45
13	Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nature Immunology, 2022, 23, 705-717.	14.5	42
14	Optogenetic reporters. Biology of the Cell, 2013, 105, 14-29.	2.0	39
15	Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging. Scientific Reports, 2016, 6, 22129.	3.3	30
16	Imaging mRNA trafficking in living cells using fluorogenic proteins. Current Opinion in Chemical Biology, 2020, 57, 177-183.	6.1	16
17	Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer. Angewandte Chemie - International Edition, 2021, 60, 24153-24161.	13.8	16
18	Self-Assembly of Intracellular Multivalent RNA Complexes Using Dimeric Corn and Beetroot Aptamers. Journal of the American Chemical Society, 2022, 144, 5471-5477.	13.7	14

#	Article	IF	CITATIONS
19	Detection of SARS-CoV-2 RNA Using a DNA Aptamer Mimic of Green Fluorescent Protein. ACS Chemical Biology, 2022, 17, 840-853.	3.4	13
20	Naturally occurring three-way junctions can be repurposed as genetically encoded RNA-based sensors. Cell Chemical Biology, 2021, 28, 1569-1580.e4.	5.2	12
21	Switching between Ultrafast Pathways Enables a Green-Red Emission Ratiometric Fluorescent-Protein-Based Ca2+ Biosensor. International Journal of Molecular Sciences, 2021, 22, 445.	4.1	11
22	Fluorophoreâ€Promoted RNA Folding and Photostability Enables Imaging of Single Broccoliâ€Tagged mRNAs in Live Mammalian Cells. Angewandte Chemie, 2020, 132, 4541-4548.	2.0	7
23	Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer. Angewandte Chemie, 2021, 133, 24355-24363.	2.0	5
24	Tracking translation one mRNA at a time. Nature Biotechnology, 2016, 34, 723-724.	17.5	0