List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332662/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589, 52-58.                                                         | 13.7 | 723       |
| 2  | Massively parallel coherent laser ranging using a soliton microcomb. Nature, 2020, 581, 164-170.                                                              | 13.7 | 325       |
| 3  | Integrated turnkey soliton microcombs. Nature, 2020, 582, 365-369.                                                                                            | 13.7 | 295       |
| 4  | Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics, 2020, 14, 486-491.                                  | 15.6 | 229       |
| 5  | A microphotonic astrocomb. Nature Photonics, 2019, 13, 31-35.                                                                                                 | 15.6 | 215       |
| 6  | Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators. Optica, 2017, 4, 684.                                                    | 4.8  | 208       |
| 7  | Laser soliton microcombs heterogeneously integrated on silicon. Science, 2021, 373, 99-103.                                                                   | 6.0  | 173       |
| 8  | Electrically pumped photonic integrated soliton microcomb. Nature Communications, 2019, 10, 680.                                                              | 5.8  | 160       |
| 9  | High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 2021, 12, 2236.         | 5.8  | 157       |
| 10 | Dynamics of soliton crystals in optical microresonators. Nature Physics, 2019, 15, 1071-1077.                                                                 | 6.5  | 148       |
| 11 | Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 2018, 5, 884.                            | 4.8  | 147       |
| 12 | Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5, 1347.                                                                 | 4.8  | 143       |
| 13 | Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385-390.                                                                           | 13.7 | 109       |
| 14 | Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-11. | 1.9  | 101       |
| 15 | A photonic integrated circuit–based erbium-doped amplifier. Science, 2022, 376, 1309-1313.                                                                    | 6.0  | 95        |
| 16 | Dynamics of soliton self-injection locking in optical microresonators. Nature Communications, 2021, 12, 235.                                                  | 5.8  | 86        |
| 17 | Thermorefractive noise in silicon-nitride microresonators. Physical Review A, 2019, 99, .                                                                     | 1.0  | 74        |
| 18 | Integrated photonics enables continuous-beam electron phase modulation. Nature, 2021, 600, 653-658.                                                           | 13.7 | 74        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides. Physical<br>Review Letters, 2020, 124, 013902.                                                                               | 2.9  | 67        |
| 20 | Magnetic-free silicon nitride integrated optical isolator. Nature Photonics, 2021, 15, 828-836.                                                                                                                       | 15.6 | 67        |
| 21 | Hybrid integrated photonics using bulk acoustic resonators. Nature Communications, 2020, 11, 3073.                                                                                                                    | 5.8  | 65        |
| 22 | Photonic chip-based soliton frequency combs covering the biological imaging window. Nature Communications, 2018, 9, 1146.                                                                                             | 5.8  | 62        |
| 23 | Coupling Ideality of Integrated Planar High- <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>Q</mml:mi>Microresonators. Physical Review Applied, 2017, 7, .</mml:math<br> | 1.5  | 57        |
| 24 | Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nature Physics, 2021, 17, 604-610.                                                                                                               | 6.5  | 57        |
| 25 | Double inverse nanotapers for efficient light coupling to integrated photonic devices. Optics Letters, 2018, 43, 3200.                                                                                                | 1.7  | 50        |
| 26 | Soliton microcomb based spectral domain optical coherence tomography. Nature Communications, 2021, 12, 427.                                                                                                           | 5.8  | 45        |
| 27 | Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 2020, 7, 1181.                                                                                                                         | 4.8  | 43        |
| 28 | Platicon microcomb generation using laser self-injection locking. Nature Communications, 2022, 13, 1771.                                                                                                              | 5.8  | 39        |
| 29 | Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nature Communications, 2022, 13, .                                                                                                         | 5.8  | 39        |
| 30 | Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature<br>Communications, 2020, 11, 4377.                                                                                                | 5.8  | 38        |
| 31 | Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits.<br>Communications Physics, 2022, 5, .                                                                                  | 2.0  | 36        |
| 32 | Thermally stable access to microresonator solitons via slow pump modulation. Optics Letters, 2019, 44, 4447.                                                                                                          | 1.7  | 35        |
| 33 | Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica,<br>2021, 8, 771.                                                                                                   | 4.8  | 33        |
| 34 | Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Optics Letters, 2016, 41, 3134.                                                                                                  | 1.7  | 31        |
| 35 | Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nature Communications, 2021, 12, 5867.                                                                                      | 5.8  | 31        |
| 36 | Intermode Breather Solitons in Optical Microresonators. Physical Review X, 2017, 7, .                                                                                                                                 | 2.8  | 30        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Gain-switched semiconductor laser driven soliton microcombs. Nature Communications, 2021, 12, 1425.                                                                            | 5.8 | 27        |
| 38 | Probing material absorption and optical nonlinearity of integrated photonic materials. Nature Communications, 2022, 13, .                                                      | 5.8 | 27        |
| 39 | Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Letters, 2021, 21, 2709-2718.                                                             | 4.5 | 24        |
| 40 | Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride<br>(Si <sub>3</sub> N <sub>4</sub> ) waveguide. Optical Materials Express, 2019, 9, 2553. | 1.6 | 23        |
| 41 | Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Science<br>Advances, 2020, 6, .                                                        | 4.7 | 21        |
| 42 | Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Optics<br>Letters, 2018, 43, 2106.                                                 | 1.7 | 20        |
| 43 | Chip-based soliton microcomb module using a hybrid semiconductor laser. Optics Express, 2020, 28, 2714.                                                                        | 1.7 | 18        |
| 44 | Dual chirped microcomb based parallel ranging at megapixel-line rates. Nature Communications, 2022, 13, .                                                                      | 5.8 | 18        |
| 45 | Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators.<br>Science Advances, 2022, 8, eabm6982.                                    | 4.7 | 16        |
| 46 | Monolithic piezoelectric control of soliton microcombs. , 2020, , .                                                                                                            |     | 12        |
| 47 | Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride<br>waveguides. Photonics Research, 2020, 8, 1475.                                  | 3.4 | 10        |
| 48 | Difference-frequency generation in optically poled silicon nitride waveguides. Nanophotonics, 2021, 10, 1923-1930.                                                             | 2.9 | 7         |
| 49 | Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides. Optics<br>Express, 2022, 30, 4342.                                                 | 1.7 | 7         |
| 50 | Hybrid Si3N4-LiNbO3 integrated platform for electro-optic conversion. , 2020, , .                                                                                              |     | 2         |
| 51 | Laser Self-Injection Locked Frequency Combs in a Normal GVD Integrated Microresonator. , 2020, , .                                                                             |     | 2         |
| 52 | Dispersion Characterization of Microresonators for Broadband Kerr Frequency Comb Generation. , 2017, , .                                                                       |     | 2         |
| 53 | Ultra-Low-Power Photonic Chip-Based Soliton Frequency Combs. , 2018, , .                                                                                                       |     | 1         |
| 54 | Photonic Damascene process with reflow step for ultra-smooth Si3N4 waveguides. , 2018, , .                                                                                     |     | 1         |

| #  | Article                                                                                                                    | IF | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 55 | High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. , 2021, , . |    | 1         |
| 56 | X-Band Aom on Chip. , 2021, , .                                                                                            |    | 1         |
| 57 | Wafer-scale fabrication of ultralow-loss silicon nitride nonlinear photonic circuits. , 2020, , .                          |    | 1         |
| 58 | Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy. , 2019, , .                                         |    | 1         |
| 59 | Thermo-refractive noise in silicon nitride microresonators. , 2019, , .                                                    |    | 1         |
| 60 | Spectral multiplexing of dissipative Kerr solitons in a single optical microresonator. , 2020, , .                         |    | 1         |
| 61 | Microresonator Dual-Comb Coherent FMCW LiDAR. , 2020, , .                                                                  |    | 1         |
| 62 | Dynamics of Soliton Microcomb Self-Injection Locking in a Silicon Nitride Microresonator. , 2020, , .                      |    | 1         |
| 63 | Ultralow-Power Photonic Chip-Based Soliton Frequency Combs. , 2018, , .                                                    |    | 0         |
| 64 | Dissipative Kerr solitons in photonic chip-based microresonators. , 2018, , .                                              |    | 0         |
| 65 | Efficient coupling of ultra-high Q crystalline microresonators to integrated photonic waveguides. , 2018, , .              |    | 0         |
| 66 | Photonic Integrated Microwave Oscillator Based on Silicon Nitride Soliton Microcomb. , 2019, , .                           |    | 0         |
| 67 | Integrated Self-Injection Locked Soliton Microcomb Source. , 2019, , .                                                     |    | 0         |
| 68 | Photonic Chip-Based Soliton Microcomb Driven by a Compact Ultra-Low-Noise Laser. , 2019, , .                               |    | 0         |
| 69 | Microresonator soliton based massively parallel coherent LiDAR. , 2020, , .                                                |    | 0         |
| 70 | Zero-dispersion solitons in microresonators with octave-spanning dispersive wave formation. , 2021, , $\cdot$              |    | 0         |
| 71 | Optical Gyrator and Microwave-to-Optical Converter using HBAR modes. , 2021, , .                                           |    | 0         |
|    |                                                                                                                            |    |           |

| #  | Article                                                                                                                     | IF | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 73 | Single-pixel massively parallel coherent LiDAR using on dual soliton microcombs. , 2021, , .                                |    | 0         |
| 74 | Integrated Magnetic-free Nitride Optical Isolator. , 2021, , .                                                              |    | 0         |
| 75 | Ultra-narrow linewidth lasers and microcombs based on self-injection locking in integrated photonics (Invited). , 2021, , . |    | 0         |
| 76 | Soliton breathing induced by avoided mode crossing in optical microresonators. , 2017, , .                                  |    | 0         |
| 77 | Soliton Kerr Frequency Combs with Octave Bandwidth in Integrated Si3N4 Microresonators. , 2017, , .                         |    | 0         |
| 78 | Double-inverse tapers for efficient light coupling with arbitrary polarization. , 2018, , .                                 |    | 0         |
| 79 | Electrically Driven Ultra-compact Photonic Integrated Soliton Microcomb. , 2019, , .                                        |    | 0         |
| 80 | Broadband Efficient Soliton Microcombs in Pulse-Driven Photonic Microresonators. , 2019, , .                                |    | 0         |
| 81 | Advanced dispersion engineering of dispersive waves in Si3N4 microresonators. , 2019, , .                                   |    | 0         |
| 82 | Ultralow-power chip-based soliton microcombs for photonic integration. , 2019, , .                                          |    | 0         |
| 83 | Photonic Integrated K-Band Microwave Oscillator Based on Silicon Nitride Soliton Microcomb. , 2019, , .                     |    | 0         |
| 84 | Integrated Si3N4 Soliton Microcomb Driven by a Compact Ultra-low-noise Laser. , 2019, , .                                   |    | 0         |
| 85 | Perfect soliton crystals in optical microresonators. , 2019, , .                                                            |    | 0         |
| 86 | Monolithic piezoelectric control of integrated soliton microcombs. , 2020, , .                                              |    | 0         |
| 87 | Reconfigurable Radiofrequency Photonic Filters Based on Soliton Microcombs. , 2020, , .                                     |    | 0         |
| 88 | Massively parallel coherent LiDAR using dissipative Kerr solitons. , 2020, , .                                              |    | 0         |
| 89 | Two-soliton Microcombs Enabled Reconfigurable Microwave Photonic Filters. , 2020, , .                                       |    | 0         |
|    |                                                                                                                             |    |           |

6

| #  | Article                                                                                                             | IF | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------|----|-----------|
| 91 | Frequency Division Using a Soliton-Injected Semiconductor Gain-Switched Frequency Comb. , 2020, , .                 |    | 0         |
| 92 | Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. , 2020, , .                |    | 0         |
| 93 | Resonant dissipative Kerr soliton supercontinuum in the normal dispersion regime. , 2020, , .                       |    | 0         |
| 94 | Measurement of Frequency Tuning Curves of Soliton Self-Injection Locking to a Nonlinear Microresonator. , 2020, , . |    | 0         |
| 95 | Nonlinear Frequency Conversion in the Hybrid Si3N4 - LiNbO3 Integrated Platform. , 2021, , .                        |    | 0         |