J Will Medlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8332021/publications.pdf

Version: 2024-02-01

136	6,087	41 h-index	73
papers	citations		g-index
138	138	138	6482
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhancing sintering resistance of atomically dispersed catalysts in reducing environments with organic monolayers. Green Energy and Environment, 2022, 7, 1263-1269.	8.7	12
2	Reactivity of Pd–MO ₂ encapsulated catalytic systems for CO oxidation. Catalysis Science and Technology, 2022, 12, 1476-1486.	4.1	7
3	Probing surface-adsorbate interactions through active particle dynamics. Journal of Colloid and Interface Science, 2022, 614, 425-435.	9.4	7
4	Investigating deposition sequence during synthesis of Pd/Al ₂ O ₃ catalysts modified with organic monolayers. Catalysis Science and Technology, 2022, 12, 2306-2314.	4.1	3
5	Mechanism of selectivity control for zeolites modified with organic monolayers. Microporous and Mesoporous Materials, 2022, 337, 111913.	4.4	1
6	Effects of Surface Hydrophobicity on Catalytic Transfer Hydrogenation of Styrene with Formic Acid in a Biphasic Mixture. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33457-33462.	8.0	O
7	On the Reaction Mechanism of Direct H ₂ O ₂ Formation over Pd Catalysts. ACS Catalysis, 2021, 11, 2735-2745.	11.2	50
8	Organic Modifiers Promote Furfuryl Alcohol Ring Hydrogenation via Surface Hydrogen-Bonding Interactions. ACS Catalysis, 2021, 11, 3730-3739.	11.2	14
9	Scalable synthesis of selective hydrodeoxygenation inverted Pd@TiO2 nanocatalysts. Journal of Flow Chemistry, 2021, 11, 393.	1.9	1
10	Altering Linear Scaling Relationships on Metal Catalysts via Ligand–Adsorbate Hydrogen Bonding. Journal of Physical Chemistry C, 2021, 125, 23791-23802.	3.1	4
11	Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides. Accounts of Chemical Research, 2021, 54, 4080-4090.	15.6	12
12	Role of tungsten modifiers in bimetallic catalysts for enhanced hydrodeoxygenation activity and selectivity. Catalysis Science and Technology, 2020, 10, 414-423.	4.1	14
13	Controlling Catalyst-Phase Selectivity in Complex Mixtures with Amphiphilic Janus Particles. ACS Applied Materials & Diterfaces, 2020, 12, 2338-2345.	8.0	28
14	Confinement Effects on Furfuryl Alcohol Reactions over Porous Bilayer Silica-Modified Pd(111). Journal of Physical Chemistry C, 2020, 124, 25437-25446.	3.1	4
15	An experimental approach for controlling confinement effects at catalyst interfaces. Chemical Science, 2020, 11, 11024-11029.	7.4	24
16	Accelerating Electro-oxidation Turnover Rates via Potential-Modulated Stimulation of Electrocatalytic Activity. Industrial & Samp; Engineering Chemistry Research, 2020, 59, 19999-20010.	3.7	8
17	Electro-oxidation of furfural on gold is limited by furoate self-assembly. Journal of Catalysis, 2020, 391, 327-335.	6.2	30
18	Tuning Gas Adsorption Selectivity and Diffusion Rates in Zeolites with Phosphonic Acid Monolayers. Cell Reports Physical Science, 2020, 1, 100036.	5.6	3

#	Article	lF	Citations
19	Pretreatment Effects on the Surface Chemistry of Small Oxygenates on Molybdenum Trioxide. ACS Catalysis, 2020, 10, 8187-8200.	11.2	15
20	Control of Molecular Bonding Strength on Metal Catalysts with Organic Monolayers for CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 5184-5193.	13.7	45
21	Understanding the Surface Reactivity of Ligand-Protected Metal Nanoparticles for Biomass Upgrading. ACS Catalysis, 2020, 10, 5462-5474.	11.2	32
22	Tunable Catalytic Performance of Palladium Nanoparticles for H ₂ O ₂ Direct Synthesis via Surface-Bound Ligands. ACS Catalysis, 2020, 10, 5202-5207.	11.2	39
23	Reaction paths for hydrodeoxygenation of furfuryl alcohol at TiO2/Pd interfaces. Journal of Catalysis, 2019, 377, 28-40.	6.2	17
24	Effects of Phosphonic Acid Monolayers on the Dehydration Mechanism of Aliphatic Alcohols on TiO ₂ . ACS Catalysis, 2019, 9, 7808-7816.	11.2	18
25	Insight into the Oxidation Mechanism of Furanic Compounds on Pt(111). ACS Catalysis, 2019, 9, 11360-11370.	11.2	10
26	Enhancing Au/TiO ₂ Catalyst Thermostability and Coking Resistance with Alkyl Phosphonic-Acid Self-Assembled Monolayers. ACS Applied Materials & Enplied Resistance with Alkyl 41289-41296.	8.0	26
27	Elucidating Acidic Electro-Oxidation Pathways of Furfural on Platinum. ACS Catalysis, 2019, 9, 10305-10316.	11.2	85
28	Onâ€theâ€fly Catalyst Modification: Strategy to Improve Catalytic Processes Selectivity and Understanding. ChemCatChem, 2019, 11, 3355-3365.	3.7	13
29	Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts: The role of the catalyst support. Journal of Catalysis, 2019, 372, 311-320.	6.2	26
30	<i>110th Anniversary: </i> Fabrication of Inverted Pd@TiO ₂ Nanostructures for Selective Catalysis. Industrial & Engineering Chemistry Research, 2019, 58, 4032-4041.	3.7	4
31	Effects of metal oxide surface doping with phosphonic acid monolayers on alcohol dehydration activity and selectivity. Applied Catalysis A: General, 2019, 571, 102-106.	4.3	15
32	Multicomponent Catalysts: Limitations and Prospects. ACS Catalysis, 2018, 8, 3202-3208.	11.2	64
33	Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers. Journal of Physical Chemistry C, 2018, 122, 6637-6647.	3.1	22
34	Control of interfacial acid–metal catalysis with organic monolayers. Nature Catalysis, 2018, 1, 148-155.	34.4	74
35	Enhanced Hydrothermal Stability of γ-Al ₂ O ₃ Catalyst Supports with Alkyl Phosphonate Coatings. Langmuir, 2018, 34, 3619-3625.	3.5	35
36	Furfuryl alcohol deoxygenation, decarbonylation, and ring-opening on Pt(111). Surface Science, 2018, 677, 333-340.	1.9	10

#	Article	IF	CITATIONS
37	Extended Thin-Film Electrocatalyst Structures via Pt Atomic Layer Deposition. ACS Applied Nano Materials, 2018, 1, 6150-6158.	5.0	7
38	Effect of Surface Hydrophobicity of Pd/Al ₂ O ₃ on Vanillin Hydrodeoxygenation in a Water/Oil System. ACS Catalysis, 2018, 8, 11165-11173.	11.2	63
39	Phosphonic acid promotion of supported Pd catalysts for low temperature vanillin hydrodeoxygenation in ethanol. Applied Catalysis A: General, 2018, 561, 1-6.	4.3	34
40	Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces. Langmuir, 2018, 34, 6346-6357.	3.5	13
41	Catalyst design using an inverse strategy: From mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. Surface Science Reports, 2018, 73, 117-152.	7.2	68
42	Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO 2 Interfaces. Angewandte Chemie, 2017, 129, 6694-6698.	2.0	22
43	Directing Reaction Pathways through Controlled Reactant Binding at Pd–TiO ₂ Interfaces. Angewandte Chemie - International Edition, 2017, 56, 6594-6598.	13.8	60
44	Virtual Issue: Work from the Organic Reactions Catalysis Society Meeting 2016. Organic Process Research and Development, 2017, 21, 277-278.	2.7	0
45	Controlling the Surface Reactivity of Titania via Electronic Tuning of Self-Assembled Monolayers. ACS Catalysis, 2017, 7, 8351-8357.	11.2	30
46	Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111). Journal of Chemical Physics, 2016, 145, 074702.	3.0	20
47	Control of Pd catalyst selectivity with mixed thiolate monolayers. Journal of Catalysis, 2016, 339, 38-46.	6.2	38
48	Trimethylsilyl functionalization of alumina (\hat{I}^3 -Al ₂ 0 ₃) increases activity for 1,2-propanediol dehydration. Catalysis Science and Technology, 2016, 6, 5721-5728.	4.1	9
49	Application of thiolate self-assembled monolayers in selective alcohol oxidation for suppression of Pd catalyst deactivation. Journal of Catalysis, 2016, 344, 722-728.	6.2	13
50	Surface Chemistry of Aromatic Reactants on Pt- and Mo-Modified Pt Catalysts. Journal of Physical Chemistry C, 2016, 120, 26824-26833.	3.1	38
51	Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 2016, 6, 5026-5043.	11.2	372
52	Enhanced Hydrodeoxygenation of <i>m</i> -Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway. ACS Catalysis, 2016, 6, 4356-4368.	11.2	117
53	Catalyst Site Selection via Control over Noncovalent Interactions in Self-Assembled Monolayers. ACS Catalysis, 2016, 6, 5086-5094.	11.2	44
54	Control of surface alkyl catalysis with thiolate monolayers. Catalysis Science and Technology, 2016, 6, 2413-2418.	4.1	11

#	Article	IF	CITATIONS
55	Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition. Applied Catalysis A: General, 2015, 492, 107-116.	4.3	89
56	Controlling Nanoscale Properties of Supported Platinum Catalysts through Atomic Layer Deposition. ACS Catalysis, 2015, 5, 1344-1352.	11.2	59
57	Controlling Catalytic Selectivity via Adsorbate Orientation on the Surface: From Furfural Deoxygenation to Reactions of Epoxides. Journal of Physical Chemistry Letters, 2015, 6, 1348-1356.	4.6	37
58	Scaling the rough heights. Nature Chemistry, 2015, 7, 378-380.	13.6	10
59	Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. Journal of Molecular Catalysis A, 2015, 396, 188-195.	4.8	22
60	Hydrogenation of Cinnamaldehyde over Pd/Al2O3 Catalysts Modified with Thiol Monolayers. Topics in Catalysis, 2014, 57, 1505-1511.	2.8	16
61	Ring-Opening and Oxidation Pathways of Furanic Oxygenates on Oxygen-Precovered Pd(111). Journal of Physical Chemistry C, 2014, 118, 27933-27943.	3.1	20
62	Hydrogen Exposure Effects on Pt/Al ₂ O ₃ Catalysts Coated with Thiolate Monolayers. Langmuir, 2014, 30, 14104-14110.	3.5	11
63	The influence of oxygen on the surface chemistry of 1,2-propanediol on Pd(111). Surface Science, 2014, 619, 30-38.	1.9	12
64	Synergistic Effects of Alloying and Thiolate Modification in Furfural Hydrogenation over Cu-Based Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 4110-4114.	4.6	56
65	Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catalysis, 2014, 4, 3123-3131.	11.2	106
66	Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions. ACS Catalysis, 2014, 4, 2714-2717.	11.2	150
67	An ab Initio Investigation of Proton Stability at BaZrO ₃ Interfaces. Chemistry of Materials, 2014, 26, 4915-4924.	6.7	12
68	Predicting and Comparing C–M and O–M Bond Strengths for Adsorption on Transition Metal Surfaces. Journal of Physical Chemistry C, 2014, 118, 2666-2672.	3.1	36
69	Promotion of Activity and Selectivity by Alkanethiol Monolayers for Pd-Catalyzed Benzyl Alcohol Hydrodeoxygenation. Journal of Physical Chemistry C, 2014, 118, 23783-23789.	3.1	46
70	Controlling the Surface Environment of Heterogeneous Catalysts Using Self-Assembled Monolayers. Accounts of Chemical Research, 2014, 47, 1438-1445.	15.6	262
71	Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions. Journal of the American Chemical Society, 2014, 136, 520-526.	13.7	246
72	O H versus C H bond scission sequence in ethanol decomposition on Pd(111). Surface Science, 2014, 619, 114-118.	1.9	22

#	Article	IF	CITATIONS
73	Scaling relations between adsorption energies for computational screening and design of catalysts. Catalysis Science and Technology, 2014, 4, 3748-3761.	4.1	225
74	Benzyl Alcohol Oxidation on $Pd(111)$: Aromatic Binding Effects on Alcohol Reactivity. Langmuir, 2014, 30, 4642-4653.	3.5	34
75	A Unified Picture of Adsorption on Transition Metals through Different Atoms. Journal of the American Chemical Society, 2014, 136, 9272-9275.	13.7	55
76	The selective oxidation of ethylene glycol and 1,2-propanediol on Au, Pd, and Au–Pd bimetallic catalysts. Journal of Catalysis, 2013, 307, 111-120.	6.2	82
77	Selective Hydrogenation of Polyunsaturated Fatty Acids Using Alkanethiol Self-Assembled Monolayer-Coated Pd/Al ₂ O ₃ Catalysts. ACS Catalysis, 2013, 3, 2041-2044.	11.2	58
78	Interactions of Hydrogen, CO, Oxygen, and Water with Molybdenum-Modified Pt(111). Journal of Physical Chemistry C, 2013, 117, 26716-26724.	3.1	14
79	Computational investigation of defect segregation at the (001) surface of BaCeO3 and BaZrO3: the role of metal–oxygen bond strength in controlling vacancy segregation. Journal of Materials Chemistry A, 2013, 1, 2840.	10.3	18
80	Synthesis of supported Ni catalysts by atomic layer deposition. Journal of Catalysis, 2013, 303, 9-15.	6.2	69
81	Controlling surface crowding on a Pd catalyst with thiolate self-assembled monolayers. Journal of Catalysis, 2013, 303, 92-99.	6.2	58
82	A Simple, Accurate Model for Alkyl Adsorption on Late Transition Metals. Journal of Physical Chemistry C, 2013, 117, 2835-2843.	3.1	12
83	Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nature Communications, 2013, 4, 2448.	12.8	180
84	Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces. Journal of Physical Chemistry C, 2013, 117, 20078-20088.	3.1	36
85	A density functional study of C1–C4 alkyl adsorption on Cu(111). Journal of Chemical Physics, 2012, 136, 204710.	3.0	13
86	Liquid- and vapor-phase hydrogenation of 1-epoxy-3-butene using self-assembled monolayer coated palladium and platinum catalysts. Applied Catalysis A: General, 2012, 445-446, 102-106.	4.3	19
87	Surface Chemistry of 2-lodoethanol on Pd(111): Orientation of Surface-Bound Alcohol Controls Selectivity. Journal of Physical Chemistry C, 2012, 116, 4201-4208.	3.1	13
88	Adsorption Orientation-Induced Selectivity Control of Reactions of Benzyl Alcohol on Pd(111). Journal of Physical Chemistry C, 2012, 116, 13654-13660.	3.1	54
89	Organic Thiol Modified Pt/TiO ₂ Catalysts to Control Chemoselective Hydrogenation of Substituted Nitroarenes. ACS Catalysis, 2012, 2, 2079-2081.	11.2	159
90	NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance. Catalysis Letters, 2012, 142, 718-727.	2.6	16

#	Article	IF	Citations
91	Adsorption and Reaction of Furfural and Furfuryl Alcohol on Pd(111): Unique Reaction Pathways for Multifunctional Reagents. ACS Catalysis, 2011, 1, 1272-1283.	11.2	145
92	Adsorption of Oxygenates on Alkanethiol-Functionalized $Pd(111)$ Surfaces: Mechanistic Insights into the Role of Self-Assembled Monolayers on Catalysis. Langmuir, 2011, 27, 6731-6737.	3.5	28
93	Understanding and Controlling Reactivity of Unsaturated Oxygenates and Polyols on Metal Catalysts. ACS Catalysis, 2011, 1, 1284-1297.	11.2	101
94	Effects of Water and Formic Acid Adsorption on the Electronic Structure of Anatase TiO ₂ (101). Journal of Physical Chemistry C, 2011, 115, 2738-2749.	3.1	41
95	A theoretical study of the influence of dopant concentration on the hydration properties of yttrium-doped barium cerate. Solid State Ionics, 2011, 204-205, 27-34.	2.7	23
96	Effect of water on the adsorbed structure of formic acid on TiO2 anatase (101). Journal of Catalysis, 2011, 278, 321-328.	6.2	53
97	Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products. Journal of Catalysis, 2011, 282, 249-257.	6.2	19
98	Surface-level mechanistic studies of adsorbate–adsorbate interactions in heterogeneous catalysis by metals. Surface Science Reports, 2011, 66, 173-184.	7.2	45
99	Experimental and modeling studies of acetylene detection in hydrogen/acetylene mixtures on PdM bimetallic metal–insulator–semiconductor devices. Sensors and Actuators B: Chemical, 2011, 156, 924-931.	7.8	15
100	Adsorption and decomposition of \hat{l}^3 -butyrolactone on Pd(111) and Pt(111). Surface Science, 2010, 604, 98-105.	1.9	10
101	Effects of Ring Structure on the Reaction Pathways of Cyclic Esters and Ethers on Pd(111). Topics in Catalysis, 2010, 53, 1179-1184.	2.8	7
102	Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. Journal of Catalysis, 2010, 275, 294-299.	6.2	77
103	The adsorption and reaction of ethylene glycol and 1,2-propanediol on Pd(111): A TPD and HREELS study. Surface Science, 2010, 604, 1558-1564.	1.9	36
104	Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Materials, 2010, 9, 853-858.	27.5	358
105	Adsorption and Reactivity of 2,3-Dihydrofuran and 2,5-Dihydrofuran on Pd(111): Influence of the Câ•€ Position on the Reactivity of Cyclic Ethers. Langmuir, 2010, 26, 13320-13332.	3. 5	12
106	Selective acetylene detection through surface modification of metal–insulator–semiconductor sensors with alkanethiolate monolayers. Sensors and Actuators B: Chemical, 2009, 136, 315-319.	7.8	15
107	Theoretical and experimental studies of Ag–Pt interactions for supported Ag–Pt bimetallic catalysts. Surface Science, 2009, 603, 690-696.	1.9	40
108	Adsorption and Decomposition of 2(5H)-Furanone on Pd(111) and Pt(111): Comparison of Ring-Opening Pathways of an Unsaturated Cyclic Ester. Journal of Physical Chemistry C, 2009, 113, 14900-14907.	3.1	13

#	Article	IF	Citations
109	Investigation of submonolayer SiOX species formed from oxidation of silane on Pt(111). Surface Science, 2008, 602, 3225-3231.	1.9	7
110	Density functional theory studies of submonolayer oxidized silicon structures on Pd(111) and Pt(111). Surface Science, 2008, 602, 3603-3610.	1.9	4
111	Adsorption and decomposition of SiH4 on Pd(111). Surface Science, 2008, 602, 693-701.	1.9	20
112	Adsorption and reaction of SiH4 and oxygen on Pd(111). Surface Science, 2008, 602, 786-794.	1.9	14
113	Common Decomposition Pathways of 1-Epoxy-3-butene and 2-Butenal on Pd(111). Journal of Physical Chemistry C, 2008, 112, 20406-20412.	3.1	22
114	Adsorption and Reaction of 1-Epoxy-3-butene on $Pt(111)$: Implications for Heterogeneous Catalysis of Unsaturated Oxygenates. Journal of the American Chemical Society, 2008, 130, 5507-5514.	13.7	25
115	Profiling of hydrogen in metal-insulator-semiconductor sensors using neutron reflectivity. Applied Physics Letters, 2008, 92, .	3.3	2
116	Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt(111)-Alloy Surfaces. Journal of Physical Chemistry C, 2007, 111, 17052-17060.	3.1	127
117	A density functional theory study of H2S decomposition on the (111) surfaces of model Pd-alloys. Surface Science, 2007, 601, 5382-5393.	1.9	65
118	Mechanistic Study of the Electrochemical Oxygen Reduction Reaction on $Pt(111)$ Using Density Functional Theory. Journal of Physical Chemistry B, 2006, 110, 15338-15344.	2.6	91
119	Effects of a polyimide coating on the hydrogen selectivity of MIS sensors. Sensors and Actuators B: Chemical, 2006, 115, 86-92.	7.8	16
120	Application of polymer-coated metal-insulator-semiconductor sensors for the detection of dissolved hydrogen. Applied Physics Letters, 2006, 88, 233507.	3.3	10
121	Theoretical Study of the Adsorption and Dissociation of Oxygen on Pt(111) in the Presence of Homogeneous Electric Fields. Journal of Physical Chemistry B, 2005, 109, 6304-6310.	2.6	127
122	Hydrocarbon detection via ion implantation in metal–insulator–semiconductor devices. Applied Physics Letters, 2004, 85, 5457-5459.	3.3	1
123	Deuterium adsorption on $W(100)$ studied by LEIS and DRS. Surface Science, 2004, 571, 31-40.	1.9	5
124	The response of palladium metal-insulator-semiconductor devices to hydrogen–oxygen mixtures: comparisons between kinetic models and experiment. Sensors and Actuators B: Chemical, 2003, 96, 290-297.	7.8	22
125	Theoretical Study of the Adsorption of Acetylene on the (111) Surfaces of Pd, Pt, Ni, and Rh. Journal of Physical Chemistry B, 2003, 107, 217-223.	2.6	107
126	Effects of competitive carbon monoxide adsorption on the hydrogen response of metal–insulator–semiconductor sensors: the role of metal film morphology. Journal of Applied Physics, 2003, 93, 2267-2274.	2.5	15

#	ARTICLE	IF	CITATION
127	Synthesis of Oxametallacycles from 2-lodoethanol on Ag(111) and the Structure Dependence of Their Reactivity. Langmuir, 2002, 18, 5197-5204.	3.5	48
128	The reaction of 1-chloro-2-methyl-2-propanol on oxygen-covered Ag(): epoxide formation via a surface chlorohydrin reaction. Surface Science, 2002, 506, 105-118.	1.9	10
129	The Formation of Epoxides from Reactions of Oxametallacycles on Ag(110):Â A Density Functional Theory Study. Journal of Physical Chemistry B, 2001, 105, 10054-10061.	2.6	50
130	NEXAFS investigations of cyclooctatetraene on TiO2(001). Surface Science, 2001, 492, 203-213.	1.9	5
131	Thermal Activation of tert-Butyl Nitrite on Pt(111):  tert-Butoxy Dehydrogenation and Oxametallacycle Formation. Langmuir, 2001, 17, 798-806.	3.5	15
132	Experimental and Theoretical Probes of the Structure of Oxametallacycle Intermediates Derived from 1-Epoxy-3-butene on Ag(110). Journal of Physical Chemistry B, 2001, 105, 3769-3775.	2.6	23
133	Use of Oxygen-18 to Determine Kinetics of Butadiene Epoxidation over Cs-Promoted, Ag Catalysts. Journal of Catalysis, 2001, 203, 362-368.	6.2	37
134	Deuterium Kinetic Isotope Effects in Butadiene Epoxidation over Unpromoted and Cs-Promoted Silver Catalysts. Journal of Catalysis, 2001, 204, 71-76.	6.2	39
135	Oxametallacycle formation via ring-opening of 1-epoxy-3-butene on $Ag(110)$: a combined experimental/theoretical approach. Journal of Molecular Catalysis A, 2000, 163, 129-145.	4.8	54
136	Stabilities of Substituted Oxametallacycle Intermediates:Â Implications for Regioselectivity of Epoxide Ring Opening and Olefin Epoxidation. Journal of Physical Chemistry B, 1999, 103, 11169-11175.	2.6	30