Gail Atkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8331478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 <i>s</i> and 10.0 <i>s</i> . Earthquake Spectra, 2008, 24, 99-138.	3.1	1,338
2	NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 2014, 30, 1057-1085.	3.1	1,091
3	Ground-motion relations for eastern North America. Bulletin of the Seismological Society of America, 1995, 85, 17-30.	2.3	614
4	NGA-West2 Research Project. Earthquake Spectra, 2014, 30, 973-987.	3.1	415
5	Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 2016, 87, 631-647.	1.9	329
6	Comparisons of the NGA Ground-Motion Relations. Earthquake Spectra, 2008, 24, 45-66.	3.1	267
7	The shape of ground motion attenuation curves in southeastern Canada. Bulletin of the Seismological Society of America, 1992, 82, 2014-2031.	2.3	246
8	Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 2018, 359, 304-308.	12.6	181
9	Evaluation of models for earthquake source spectra in eastern North America. Bulletin of the Seismological Society of America, 1998, 88, 917-934.	2.3	146
10	Comparison of NGA-West2 GMPEs. Earthquake Spectra, 2014, 30, 1179-1197.	3.1	138
11	A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. Journal of Geophysical Research: Solid Earth, 2017, 122, 492-505.	3.4	134
12	Groundâ€Motion Prediction Equation for Smallâ€ŧoâ€Moderate Events at Short Hypocentral Distances, with Application to Induced‧eismicity Hazards. Bulletin of the Seismological Society of America, 2015, 105, 981-992.	2.3	130
13	Regionally Adjustable Generic Groundâ€Motion Prediction Equation Based on Equivalent Pointâ€Source Simulations: Application to Central and Eastern North America. Bulletin of the Seismological Society of America, 2015, 105, 1989-2009.	2.3	126
14	Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 2020, 1, 264-277.	29.7	123
15	Earthquake time histories compatible with the 2005 <i>National building code of Canada</i> uniform hazard spectrum. Canadian Journal of Civil Engineering, 2009, 36, 991-1000.	1.3	108
16	Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks. Geophysical Research Letters, 2015, 42, 2750-2758.	4.0	104
17	Ground motion prediction equations for application to the 2015 Canadian national seismic hazard maps. Canadian Journal of Civil Engineering, 2013, 40, 988-998.	1.3	95
18	Notes on ground motion parameters for eastern north America: Duration and H/V ratio. Bulletin of the Seismological Society of America, 1993, 83, 587-596.	2.3	90

GAIL ATKINSON

#	Article	IF	CITATIONS
19	Implications of the 2011 M9.0 Tohoku Japan earthquake for the treatment of site effects in large earthquakes. Bulletin of Earthquake Engineering, 2013, 11, 171-203.	4.1	88
20	Applicability of the Site Fundamental Frequency as a <i>V</i> _{<i>S</i>30} Proxy for Central and Eastern North America. Bulletin of the Seismological Society of America, 2016, 106, 653-664.	2.3	88
21	Development of seismic hazard maps for the proposed 2005 edition of the National Building Code of Canada. Canadian Journal of Civil Engineering, 2003, 30, 255-271.	1.3	81
22	Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamics and Earthquake Engineering, 2014, 67, 30-43.	3.8	81
23	Simple Computation of Liquefaction Probability for Seismic Hazard Applications. Earthquake Spectra, 1984, 1, 107-123.	3.1	80
24	Compatible ground-motion time histories for new national seismic hazard maps. Canadian Journal of Civil Engineering, 1998, 25, 305-318.	1.3	76
25	NGA-West2 Equations for Predicting Vertical-Component PGA, PGV, and 5%-Damped PSA from Shallow Crustal Earthquakes. Earthquake Spectra, 2016, 32, 1005-1031.	3.1	76
26	The high-frequency shape of the source spectrum for earthquakes in eastern and western Canada. Bulletin of the Seismological Society of America, 1996, 86, 106-112.	2.3	75
27	Ground Motion Prediction Equations in the San Jacinto Fault Zone: Significant Effects of Rupture Directivity and Fault Zone Amplification. Pure and Applied Geophysics, 2014, 171, 3045-3081.	1.9	70
28	Attenuation and source parameters of earthquakes in the Cascadia region. Bulletin of the Seismological Society of America, 1995, 85, 1327-1342.	2.3	68
29	Source analysis of a potential hydraulicâ€fracturingâ€induced earthquake near Fox Creek, Alberta. Geophysical Research Letters, 2016, 43, 564-573.	4.0	60
30	Seismic performance of woodâ€frame houses in southâ€western British Columbia. Earthquake Engineering and Structural Dynamics, 2011, 40, 903-924.	4.4	57
31	An Equivalent Pointâ€Source Model for Stochastic Simulation of Earthquake Ground Motions in California. Bulletin of the Seismological Society of America, 2015, 105, 1435-1455.	2.3	52
32	Recent Trends in Ground Motion and Spectral Response Relations for North America. Earthquake Spectra, 1990, 6, 15-35.	3.1	40
33	Comparative Study of the Inelastic Seismic Demand of Eastern and Western Canadian Sites. Earthquake Spectra, 2001, 17, 333-358.	3.1	40
34	A high-frequency magnitude scale. Bulletin of the Seismological Society of America, 1995, 85, 825-833.	2.3	37
35	Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 2020, 110, 2252-2271.	2.3	36
36	Database of Processed Time Series and Response Spectra Data for Canada: An Example Application to Study of 2005 MN 5.4 Riviere du Loup, Quebec, Earthquake. Seismological Research Letters, 2010, 81, 1013-1031.	1.9	35

GAIL ATKINSON

#	Article	IF	CITATIONS
37	Ground-motion prediction equations for interface earthquakes of M7 to M9 based on empirical data from Japan. Bulletin of Earthquake Engineering, 2014, 12, 549-571.	4.1	35
38	Are Groundâ€Motion Models Derived from Natural Events Applicable to the Estimation of Expected Motions for Induced Earthquakes?. Seismological Research Letters, 2017, 88, 430-441.	1.9	33
39	Spectral scaling of the 1985 to 1988 Nahanni, Northwest Territories, earthquakes. Bulletin of the Seismological Society of America, 1989, 79, 1736-1761.	2.3	33
40	Calibration of time history simulation methods. Bulletin of the Seismological Society of America, 1994, 84, 400-414.	2.3	32
41	A preliminary statistical model for hydraulic fractureâ€induced seismicity in the Western Canada Sedimentary Basin. Geophysical Research Letters, 2016, 43, 10,164.	4.0	29
42	Stress Drops and Directivity of Induced Earthquakes in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 2019, 109, 1635-1652.	2.3	29
43	Application of a Siteâ€Effects Model Based on Peak Frequency and Average Shearâ€Wave Velocity to California. Bulletin of the Seismological Society of America, 2018, 108, 351-357.	2.3	26
44	Shortâ€Term Hindcasts of Seismic Hazard in the Western Canada Sedimentary Basin Caused by Induced and Natural Earthquakes. Seismological Research Letters, 2019, 90, 1420-1435.	1.9	24
45	Empirically Calibrated Groundâ€Motion Prediction Equation for Oklahoma. Bulletin of the Seismological Society of America, 2018, 108, 2444-2461.	2.3	23
46	Duration of the 2011 Tohoku earthquake ground motions. Journal of Seismology, 2015, 19, 9-25.	1.3	21
47	Preliminary Evaluation of Ground Motions from Earthquakes in Alberta. Seismological Research Letters, 2015, 86, 1086-1095.	1.9	18
48	Variation of Source-to-Site Distance for Megathrust Subduction Earthquakes: Effects on Ground Motion Prediction Equations. Earthquake Spectra, 2014, 30, 845-866.	3.1	17
49	Strategies to prevent damage to critical infrastructure due to induced seismicity. Facets, 2017, 2, 374-394.	2.4	17
50	Adjustable Generic Groundâ€Motion Prediction Equation Based on Equivalent Point‧ource Simulations: Accounting for Kappa Effects. Bulletin of the Seismological Society of America, 2018, 108, 913-928.	2.3	16
51	The Intensity of Ground Motions from Induced Earthquakes with Implications for Damage Potential. Bulletin of the Seismological Society of America, 2020, 110, 2366-2379.	2.3	16
52	Estimation of Moment Magnitude and Stress Parameter from ShakeMap Groundâ€Motion Parameters. Bulletin of the Seismological Society of America, 2015, 105, 2572-2588.	2.3	15
53	Empirical Evaluation of Aleatory and Epistemic Uncertainty in Eastern Ground Motions. Seismological Research Letters, 2013, 84, 130-138.	1.9	12
54	Spatiotemporal Variations in the Completeness Magnitude of the Composite Alberta Seismicity Catalog (CASC). Seismological Research Letters, 2016, 87, 853-863.	1.9	12

GAIL ATKINSON

#	Article	IF	CITATIONS
55	Significance of site natural period effects for linear site amplification in central and eastern North America: Empirical and simulation-based models. Earthquake Spectra, 2020, 36, 87-110.	3.1	12
56	Statistical Modeling and Characterization of Induced Seismicity Within the Western Canada Sedimentary Basin. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020606.	3.4	12
57	Uncertainties in probabilistic seismic hazard assessment as a function of probability level: A case history for Vancouver, British Columbia. Bulletin of the Seismological Society of America, 1983, 73, 1225-1241.	2.3	11
58	Nonlinear Response Potential of Real versus Simulated Ground Motions for the 11 March 2011 Tohoku-oki Earthquake. Earthquake Spectra, 2015, 31, 1711-1734.	3.1	10
59	A New Year's Day icebreaker: icequakes on lakes in Alberta, Canada. Canadian Journal of Earth Sciences, 2019, 56, 183-200.	1.3	8
60	Reconciling Ground Motions and Stress Drops for Induced Earthquakes in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 2020, 110, 2398-2410.	2.3	6
61	Coseismic stress parameter of three California Earthquakes derived from the stochastic finite fault technique. Journal of Seismology, 2010, 14, 431-443.	1.3	4
62	Uncertainty in recurrence rates of large magnitude events due to short historic catalogs. Journal of Seismology, 2014, 18, 565-573.	1.3	4
63	The Interface Between Empirical and Simulation-Based Ground-Motion Models. Pure and Applied Geophysics, 2020, 177, 2069-2081.	1.9	2
64	Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations. Pure and Applied Geophysics, 2015, 172, 2139-2155.	1.9	0
65	Overview of Ground-Motion Issues for Cascadia Megathrust Events: Simulation of Ground-Motions and Earthquake Site Response. Frontiers in Built Environment, 2017, 3, .	2.3	0
66	Introduction to the Special Section on Fault Displacement and Near-Source Ground-Motion Models. Bulletin of the Seismological Society of America, 2021, 111, 2271-2274.	2.3	0