Ciaran G Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8330788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How CEP164 ciliopathy mutations impair ciliogenesis. Structure, 2022, 30, 4-5.	3.3	1
2	Aggresome assembly at the centrosome is driven by CP110–CEP97–CEP290 and centriolar satellites. Nature Cell Biology, 2022, 24, 483-496.	10.3	18
3	Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. International Journal of Molecular Sciences, 2021, 22, 3143.	4.1	17
4	Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochemical Society Transactions, 2021, 49, 829-841.	3.4	4
5	Altered gene regulation as a candidate mechanism by which ciliopathy gene SDCCAG8 contributes to schizophrenia and cognitive function. Human Molecular Genetics, 2020, 29, 407-417.	2.9	8
6	Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma, 2020, 129, 115-120.	2.2	5
7	KIFC3 directs a centrosome cohesive force. Nature Cell Biology, 2019, 21, 1057-1059.	10.3	1
8	Differential requirements for the EF-hands of human centrin2 in primary ciliogenesis and nucleotide excision repair. Journal of Cell Science, 2019, 132, .	2.0	14
9	Centrobin controls primary ciliogenesis in vertebrates. Journal of Cell Biology, 2018, 217, 1205-1215.	5.2	26
10	Centriole splitting caused by loss of the centrosomal linker protein C-NAP1 reducesÂcentriolar satellite density and impedesÂcentrosome amplification. Molecular Biology of the Cell, 2017, 28, 736-745.	2.1	25
11	Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes. Molecular and Cellular Proteomics, 2016, 15, 2802-2818.	3.8	20
12	Gene-targeted CEP164-deficient cells show a ciliation defect with intact DNA repair capacity. Journal of Cell Science, 2016, 129, 1769-74.	2.0	36
13	Centrosomes in the DNA damage response—the hub outside the centre. Chromosome Research, 2016, 24, 35-51.	2.2	52
14	Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response. Oncogene, 2016, 35, 2003-2010.	5.9	24
15	Centrin2 regulates CP110 removal in primary cilium formation. Journal of Cell Biology, 2015, 208, 693-701.	5.2	64
16	Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. Journal of Cell Biology, 2015, 209, 339-348.	5.2	40
17	Protein stability versus function: effects of destabilizing missense mutations on <i>BRCA1</i> DNA repair activity. Biochemical Journal, 2015, 466, 613-624.	3.7	12
18	Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity. Cell Cycle, 2014, 13, 2773-2779	2.6	22

CIARAN G MORRISON

#	Article	IF	CITATIONS
19	Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature, 2014, 512, 198-202.	27.8	519
20	BOOSTER: Development of a toolbox for triage of large group of individuals exposed to radioactive material. , 2013, , .		0
21	Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle, 2013, 12, 635-646.	2.6	15
22	Abnormal centrosomal structure and duplication in Cep135-deficient vertebrate cells. Molecular Biology of the Cell, 2013, 24, 2645-2654.	2.1	23
23	Loss of centrioles causes chromosomal instability in vertebrate somatic cells. Journal of Cell Biology, 2013, 203, 747-756.	5.2	114
24	Calcium-Binding Capacity of Centrin2 Is Required for Linear POC5 Assembly but Not for Nucleotide Excision Repair. PLoS ONE, 2013, 8, e68487.	2.5	31
25	C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle, 2012, 11, 3769-3778.	2.6	40
26	Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification. Journal of Cell Science, 2012, 125, 5353-68.	2.0	39
27	SUMO ligase activity of vertebrate Mms21/Nse2 is required for efficient DNA repair but not for Smc5/6 complex stability. DNA Repair, 2012, 11, 799-810.	2.8	12
28	Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cellular and Molecular Life Sciences, 2012, 69, 2979-2997.	5.4	53
29	Centrosomes, DNA Damage and Aneuploidy. , 2012, , 223-241.		5
30	Increased γH2AX Foci in Old Hematopoietic Stem Cells Are Independent of the DNA Damage Response and Linked to Inefficient DNA Replication/Transcription. Blood, 2012, 120, 1207-1207.	1.4	0
31	The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability. FEBS Letters, 2011, 585, 2907-2913.	2.8	41
32	Centrosome amplification in CHO and DT40 cells by inactivation of cyclinâ€dependent kinases. Cytoskeleton, 2011, 68, 446-458.	2.0	17
33	Defective nucleotide excision repair with normal centrosome structures and functions in the absence of all vertebrate centrins. Journal of Cell Biology, 2011, 193, 307-318.	5.2	51
34	Roles of Vertebrate Smc5 in Sister Chromatid Cohesion and Homologous Recombinational Repair. Molecular and Cellular Biology, 2011, 31, 1369-1381.	2.3	46
35	Getting permission: How DNA damage causes centrosome amplification. Cell Cycle, 2011, 10, 1890-1891.	2.6	3
36	DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2. Oncogene, 2010, 29, 616-624.	5.9	41

CIARAN G MORRISON

#	Article	IF	CITATIONS
37	MCPH1/BRIT1 limits ionizing radiation-induced centrosome amplification. Oncogene, 2010, 29, 5537-5544.	5.9	27
38	A Centrosome-autonomous Signal That Involves Centriole Disengagement Permits Centrosome Duplication in G2 Phase after DNA Damage. Molecular Biology of the Cell, 2010, 21, 3866-3877.	2.1	53
39	Hematopoietic Stem Cell Quiescence Promotes Error-Prone DNA Repair and Mutagenesis. Cell Stem Cell, 2010, 7, 174-185.	11.1	521
40	Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells. Nucleic Acids Research, 2009, 37, 6054-6063.	14.5	21
41	Trf1 Is Not Required for Proliferation or Functional Telomere Maintenance in Chicken DT40 Cells. Molecular Biology of the Cell, 2009, 20, 2563-2571.	2.1	10
42	Centriole separation in DNA damageâ€induced centrosome amplification. Environmental and Molecular Mutagenesis, 2009, 50, 725-732.	2.2	37
43	Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene, 2008, 27, 139-144.	5.9	75
44	Ku70 prevents genome instability resulting from heterozygosity of the telomerase RNA component in a vertebrate tumour line. DNA Repair, 2008, 7, 713-724.	2.8	8
45	Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line. Journal of Cell Biology, 2008, 183, 279-296.	5.2	94
46	How Can Hematopoietic Stem Cells and Myeloid Progenitors Become Transformed? Blood, 2008, 112, 1389-1389.	1.4	0
47	Involvement of Centrosome Amplification in Radiation-Induced Mitotic Catastrophe. Cell Cycle, 2007, 6, 364-370.	2.6	75
48	DNA damage induces Chk1â€dependent centrosome amplification. EMBO Reports, 2007, 8, 603-609.	4.5	108
49	Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO Journal, 2006, 25, 1305-1314.	7.8	237
50	Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO Journal, 2004, 23, 3864-3873.	7.8	176
51	Analysis of Scc1â€deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Reports, 2004, 5, 167-171.	4.5	68
52	Chromosome damage and progression into and through mitosis in vertebrates. DNA Repair, 2004, 3, 1133-1139.	2.8	35
53	Sister chromatid cohesion and genome stability in vertebrate cells. Biochemical Society Transactions, 2003, 31, 263-265.	3.4	27
54	Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Research, 2002, 30, 5318-5327.	14.5	60

#	Article	IF	CITATIONS
55	Reverse genetics of essential genes in tissue-culture cells: â€ [~] dead cells talking'. Trends in Cell Biology, 2002, 12, 281-287.	7.9	38
56	Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells. Developmental Cell, 2001, 1, 759-770.	7.0	255
57	Genetic Analysis of the DNA-dependent Protein Kinase Reveals an Inhibitory Role of Ku in Late S–G2 Phase DNA Double-strand Break Repair. Journal of Biological Chemistry, 2001, 276, 44413-44418.	3.4	142
58	Homologous DNA recombination in vertebrate cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8388-8394.	7.1	143
59	Reverse genetic studies of homologous DNA recombination using the chicken B–lymphocyte line, DT40. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 111-117.	4.0	48
60	The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO Journal, 2000, 19, 463-471.	7.8	271
61	The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair. Molecular and Cellular Biology, 2000, 20, 6476-6482.	2.3	242
62	Genetic analysis of homologous DNA recombination in vertebrate somatic cells. International Journal of Biochemistry and Cell Biology, 2000, 32, 817-831.	2.8	34
63	The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair. Molecular and Cellular Biology, 2000, 20, 6476-6482.	2.3	26
64	Disruption of ATM in p53-null cells causes multiple functional abnormalities in cellular response to ionizing radiation. Oncogene, 1999, 18, 7002-7009.	5.9	100
65	Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO Journal, 1999, 18, 6619-6629.	7.8	243
66	Sister Chromatid Exchanges Are Mediated by Homologous Recombination in Vertebrate Cells. Molecular and Cellular Biology, 1999, 19, 5166-5169.	2.3	392
67	The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis. Molecular and Cellular Biology, 1999, 19, 6891-6897.	2.3	108
68	Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO Journal, 1998, 17, 5497-5508.	7.8	1,076
69	Homologous Recombination, but Not DNA Repair, Is Reduced in Vertebrate Cells Deficient in <i>RAD52</i> . Molecular and Cellular Biology, 1998, 18, 6430-6435.	2.3	224
70	PARP is important for genomic stability but dispensable in apoptosis. Genes and Development, 1997, 11, 2347-2358.	5.9	511
71	Genetic interaction between PARP and DNA-PK in V(D)J recombination and tumorigenesis. Nature Genetics, 1997, 17, 479-482.	21.4	173
72	The impact of the PCR plateau phase on quantitative PCR. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 493-498.	2.4	74