Lorenzo Burgos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329883/publications.pdf

Version: 2024-02-01

135 3,600 33 53 g-index

135 135 135 135 2726

135 135 2726
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus) Tj ETQq1 1	0.784614	rgB 37 /Overlock
2	Protection of Solanum lycopesicum induced by chitosan and chitosan nano-hydroxyapatite against Pepino mosaic virus and Verticillium dahliae. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102386.	3.1	1
3	Acetylsalicylic acid improved antioxidative status and cold storage of encapsulated nodal segments of neem (Azadirachta indica A. Juss.). Plant Cell, Tissue and Organ Culture, 2021, 144, 261-270.	2.3	8
4	Improving Adventitious Shoot Regeneration and Transient Agrobacterium-Mediated Transformation of Apricot (Prunus armeniaca L.) Hypocotyl Sections. Agronomy, 2021, 11, 1338.	3.0	2
5	Application of Ascophyllum nodosum-Based Soluble Extract on Micropropagation and Regeneration of Nicotiana benthamiana and Prunus domestica. Plants, 2021, 10, 1354.	3.5	5
6	Hydrogen peroxide generated by over-expression of cytosolic superoxide dismutase in transgenic plums enhances bacterial canker resistance and modulates plant defence responses. Molecular Biology Reports, 2020, 47, 5889-5901.	2.3	3
7	Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants, 2020, 9, 971.	3.5	31
8	Preliminary results on virus and viroids elimination in apricot through in vitro thermo- and cold-therapy. Acta Horticulturae, 2020, , 119-122.	0.2	0
9	Semisynthetic Triterpenes Derived from Euphorbia officinarum as Plant Growth Promoters and Inducers of Disease Resistance. Journal of Plant Growth Regulation, 2019, 38, 262-272.	5.1	8
10	Towards the valorization of the invasive seaweeds Caulerpa cylindracea and Asparagopsis taxiformis in the Mediterranean Sea: applications for in vitro plant regeneration and crop protection. Journal of Applied Phycology, 2019, 31, 1403-1413.	2.8	10
11	Recent trends and comprehensive appraisal for the biotechnological production of trans-resveratrol and its derivatives. Phytochemistry Reviews, 2018, 17, 491-508.	6.5	17
12	Bud growth regulator profiles in peach. Acta Horticulturae, 2018, , 253-256.	0.2	0
13	A new strategy to enhance the biosynthesis of trans-resveratrol by overexpressing stilbene synthase gene in elicited Vitis vinifera cell cultures. Plant Physiology and Biochemistry, 2017, 113, 141-148.	5.8	30
14	Silencing of <i>Agrobacterium tumefaciens</i> oncogenes <i>ipt</i> and <i i="" iaam<=""> induces resistance to crown gall disease in plum but not in apricot. Pest Management Science, 2017, 73, 2163-2173.</i>	3.4	9
15	Production of transgenic diploid Cucumis melo plants. Plant Cell, Tissue and Organ Culture, 2017, 130, 323-333.	2.3	11
16	Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Scientific Reports, 2017, 7, 332.	3.3	38
17	Characterization of Jatropha curcas accessions based in plant growth traits and oil quality. Industrial Crops and Products, 2017, 109, 693-698.	5. 2	15
18	Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. Journal of Applied Phycology, 2017, 29, 1081-1093.	2.8	59

#	Article	IF	Citations
19	Media derived from brown seaweeds Cystoseira myriophylloides and Fucus spiralis for in vitro plant tissue culture. Plant Cell, Tissue and Organ Culture, 2017, 128, 437-446.	2.3	15
20	Antimicrobial Activity of two Semisynthetic Triterpene Derivatives from <i>Euphorbia Officinarum</i> Latex Against Fungal and Bacterial Phytopathogens. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	7
21	Antimicrobial Activity of two Semisynthetic Triterpene Derivatives from Euphorbia officinarum Latex against Fungal and Bacterial Phytopathogens. Natural Product Communications, 2017, 12, 331-336.	0.5	10
22	Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance. Annals of Botany, 2016, 117, 1121-1131.	2.9	21
23	<scp><i>A</i></scp> <i>Yi>grobacterium</i> cells: Determination of critical parameters. Biotechnology Progress, 2016, 32, 725-734.	2.6	5
24	New Transformation Technologies for Trees. Forestry Sciences, 2016, , 31-66.	0.4	2
25	Production of transgenic apricot plants from hypocotyl segments of mature seeds. Scientia Horticulturae, 2015, 197, 144-149.	3.6	8
26	Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell, Tissue and Organ Culture, 2015, 120, 791-796.	2.3	17
27	Effects of growth retardants on sprouting and development of apricot (Prunus armeniaca L.) and neem (Azarchta indica A. Juss.) nodal buds. Plant Cell, Tissue and Organ Culture, 2015, 122, 285-297.	2.3	7
28	Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theoretical and Experimental Plant Physiology, 2015, 27, 215-226.	2.4	12
29	Apricot (Prunus armeniaca L.). Methods in Molecular Biology, 2015, 1224, 111-119.	0.9	8
30	Combination of site-specific recombination and a conditional selective marker gene allows for the production of marker-free tobacco plants. Plant Cell, Tissue and Organ Culture, 2014, 116, 205-215.	2.3	17
31	Phosphomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.). Plant Cell, Tissue and Organ Culture, 2013, 113, 189-197.	2.3	24
32	Efficient in vitro shoot regeneration from mature apricot (Prunus armeniaca L.) cotyledons. Scientia Horticulturae, 2013, 160, 300-305.	3 . 6	9
33	Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. Journal of Plant Physiology, 2013, 170, 625-632.	3.5	33
34	Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnology Journal, 2013, 11, 976-985.	8.3	122
35	A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell, Tissue and Organ Culture, 2012, 110, 337-346.	2.3	30
36	Apricot. , 2012, , 415-458.		35

#	Article	IF	CITATIONS
37	CREATING MARKER-FREE PLANTS BY COMBINING SITE-SPECIFIC RECOMBINATION AND THE DAO1 GENE THAT ALLOWS BOTH POSITIVE AND NEGATIVE SELECTION. Acta Horticulturae, 2012, , 429-435.	0.2	1
38	Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu,Znâ€superoxide dismutase. Plant Pathology, 2012, 61, 858-866.	2.4	46
39	A shortâ€length single chimeric transgene induces simultaneous silencing of <i>Agrobacterium tumefaciens</i> i> oncogenes and resistance to crown gall. Plant Pathology, 2012, 61, 1073-1081.	2.4	6
40	Melon RNA interference (RNAi) lines silenced for <i>Cmâ€eIF4E</i> show broad virus resistance. Molecular Plant Pathology, 2012, 13, 755-763.	4.2	105
41	DESIGN AND CONSTRUCTION OF A TRANSFORMATION VECTOR TO INDUCE CROWN GALL DISEASE RESISTANCE. Acta Horticulturae, 2012, , 405-409.	0.2	0
42	NEW PROMISING HIGH QUALITY, SHARKA RESISTANT APRICOT CULTIVARS FROM CEBAS-CSIC (MURCIA, SPAIN) BREEDING PROGRAM. Acta Horticulturae, 2012, , 53-56.	0.2	0
43	Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 2011, 62, 2599-2613.	4.8	227
44	Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases. Journal of Plant Physiology, 2011, 168, 1858-1865.	3.5	64
45	Adventitious shoot regeneration from hypocotyl slices of mature apricot (Prunus armeniaca L.) seeds: A feasible alternative for apricot genetic engineering. Scientia Horticulturae, 2011, 128, 457-464.	3.6	21
46	NEW APRICOT CULTIVARS FROM CEBAS-CSIC (MURCIA, SPAIN) BREEDING PROGRAMME. Acta Horticulturae, 2010, , 113-118.	0.2	6
47	Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Reports, 2010, 29, 1203-1213.	5.6	61
48	Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnology, 2010, 10, 53.	3.3	44
49	Vertical transmission of Prunus necrotic ringspot virus: hitch-hiking from gametes to seedling. Journal of General Virology, 2009, 90, 1767-1774.	2.9	46
50	Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Reports, 2009, 28, 1781-1790.	5.6	34
51	AGROBACTERIUM-MEDIATED TRANSFORMATION OF A WALNUT CULTIVAR. Acta Horticulturae, 2009, , 381-386.	0.2	О
52	A PRELIMINARY STUDY ON GENOTYPE-INDEPENDENT AGROBACTERIUM-MEDIATED TRANSFORMATION METHOD TO OBTAIN GENETICALLY ENGINEERED APRICOT PLANTS. Acta Horticulturae, 2009, , 369-374.	0.2	1
53	â€~Estrella' and â€~Sublime' Apricot Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 469-470.	1.0	5
54	PRELIMINARY MOLECULAR EVIDENCE THAT QUANTITATIVE POLYMERASE CHAIN REACTION DETECTS CHIMERAS IN TRANSGENIC PLANTS. Acta Horticulturae, 2009, , 361-367.	0.2	0

#	Article	IF	Citations
55	Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Reports, 2008, 27, 1317-1324.	5.6	54
56	Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 2008, 64, 162-170.	4.2	199
57	An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Science, 2008, 175, 777-783.	3.6	17
58	EFFICIENT TRANSFORMATION OF COMMERCIAL APRICOT CULTIVARS AND REGENERATION OF TRANSFORMED PLANTS. Acta Horticulturae, 2007, , 647-651.	0.2	0
59	<i>Prunus necrotic ringspot virus</i> Early Invasion and Its Effects on Apricot Pollen Grain Performance. Phytopathology, 2007, 97, 892-899.	2.2	39
60	Apricot micropropagation., 2007,, 267-278.		7
61	USING MAT VECTOR SYSTEM TO PRODUCE MARKER-FREE TRANSFORMED APRICOT PLANTS. Acta Horticulturae, 2007, , 607-612.	0.2	4
62	Short communication. Influence of storage temperature on the viability of sweet cherry pollen. Spanish Journal of Agricultural Research, 2007, 5, 86.	0.6	15
63	PRODUCTION OF MARKER-FREE TRANSGENIC PLANTS AFTER TRANSFORMATION OF APRICOT CULTIVARS. Acta Horticulturae, 2006, , 225-228.	0.2	4
64	INFLUENCE OF EXPLANT TYPE (MERISTEM VS. AXILLARY SHOOTS) ON THE INTRODUCTION AND ESTABLISHMENT IN VITRO OF FOUR APRICOT CULTIVARS. Acta Horticulturae, 2006, , 229-232.	0.2	0
65	FIELD PERFORMANCE DIFFERENCES IN THREE APRICOT CULTIVARS PROPAGATED BY TISSUE CULTURE OR BY GRAFTING. Acta Horticulturae, 2006, , 255-260.	0.2	1
66	REGENERATION-PROMOTING GENES IMPROVE TRANSFORMATION EFFICIENCY IN APRICOT. Acta Horticulturae, 2006, , 95-100.	0.2	0
67	Self- and cross-(in)compatibility between important apricot cultivars in northwest Iran. Journal of Horticultural Science and Biotechnology, 2006, 81, 513-517.	1.9	10
68	REGENERATION OF TRANSFORMED APRICOT PLANTS FROM LEAVES OF A COMMERCIAL CULTIVAR. Acta Horticulturae, 2006, , 233-236.	0.2	1
69	The influence of polyamines on apricot ovary development and fruit set. Annals of Applied Biology, 2006, 149, 27-33.	2.5	25
70	Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature. Plant Physiology, 2006, 142, 629-641.	4.8	129
71	VARIABILITY IN CULTIVAR CHARACTERISTICS AS FACTORS INFLUENCING PRODUCTIVITY IN APRICOT. Acta Horticulturae, 2006, , 267-270.	0.2	3
72	A SELECTION STRATEGY TO OBTAIN TRANSFORMED APRICOT PLANTS. Acta Horticulturae, 2006, , 771-776.	0.2	1

#	Article	IF	Citations
73	NEW SPANISH APRICOT SELECTIONS. Acta Horticulturae, 2006, , 399-402.	0.2	О
74	SELF-(IN)COMPATIBILITY IN PRUNUS ARMENIACA L.: ANALYSIS OF THE S-LOCUS STRUCTURE AND IDENTIFICATION OF S-HAPLOTYPE SPECIFIC S-RNASE. Acta Horticulturae, 2006, , 213-216.	0.2	0
75	RELATIONSHIP BETWEEN POLYAMINES AND OVULE DEVELOPMENT IN APRICOT OVARIES AT DIFFERENT BLOOM STAGES. Acta Horticulturae, 2006, , 71-74.	0.2	0
76	The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptll-transformed leaf tissues. Plant Cell, Tissue and Organ Culture, 2005, 80, 271-276.	2.3	17
77	Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell, Tissue and Organ Culture, 2005, 82, 105-111.	2.3	41
78	Transformation of fruit trees. Useful breeding tool or continued future prospect?. Transgenic Research, 2005, 14, 15-26.	2.4	106
79	`Murciana' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 254-255.	1.0	8
80	'Dorada' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1919-1920.	1.0	10
81	Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. Journal of the American Society for Horticultural Science, 2005, 130, 893-898.	1.0	45
82	Factors affecting gene transfer efficiency to apricot leaves during early <i>Agrobacterium</i> -mediated transformation steps. Journal of Horticultural Science and Biotechnology, 2004, 79, 704-712.	1.9	30
83	Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Molecular Biology, 2004, 56, 145-157.	3.9	103
84	Contributing to the knowledge of the fertilisation process in four apricot cultivars. Scientia Horticulturae, 2004, 102, 387-396.	3.6	10
85	Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Scientia Horticulturae, 2004, 102, 397-406.	3.6	34
86	`Rojo PasioÌn' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1490-1491.	1.0	16
87	`Selene' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1492-1493.	1.0	6
88	Review. Flower biology in apricot and its implications for breeding. Spanish Journal of Agricultural Research, 2004, 2, 227.	0.6	11
89	Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Reports, 2003, 21, 1167-1174.	5.6	68
90	Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Molecular Genetics and Genomics, 2003, 269, 685-691.	2.1	22

#	Article	IF	CITATIONS
91	Apricot flower bud development and abscission related to chilling, irrigation and type of shoots. Scientia Horticulturae, 2003, 98, 265-276.	3.6	34
92	Isolation and culture of mesophyll protoplast from apricot. Journal of Horticultural Science and Biotechnology, 2003, 78, 624-628.	1.9	14
93	Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breeding, 2002, 121, 343-347.	1.9	34
94	Effects of Postharvest Putrescine Treatment on Extending Shelf Life and Reducing Mechanical Damage in Apricot. Journal of Food Science, 2002, 67, 1706-1712.	3.1	91
95	Variability in the developmental stage of apricot ovules at anthesis and its relationship with fruit set. Annals of Applied Biology, 2002, 141, 147-152.	2.5	29
96	Control of hyperhydricity in micropropagated apricot cultivars. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 250-254.	2.1	31
97	Consequences to fertilization of the developmental stage of apricot ovules at anthesis. Journal of Horticultural Science and Biotechnology, 2000, 75, 662-666.	1.9	10
98	Inheritance of resistance to plum pox potyvirus (PPV) in apricot, Prunus armeniaca. Plant Breeding, 2000, 119, 161-164.	1.9	45
99	Searching for molecular markers linked to male sterility and self-compatibility in apricot. Plant Breeding, 2000, 119, 157-160.	1.9	17
100	Exogenous Polyamines and Gibberellic Acid Effects on Peach (Prunus persica L.) Storability Improvement. Journal of Food Science, 2000, 65, 288-294.	3.1	72
101	Ovule differences between single-kernelled and double-kernelled fruits in almond (Prunus dulcis). Annals of Applied Biology, 2000, 136, 291-295.	2.5	16
102	Different media requirements for micropropagation of apricot cultivars. Plant Cell, Tissue and Organ Culture, 2000, 63, 133-141.	2.3	59
103	ADVENTITIOUS SHOOT REGENERATION FROM IN VITRO CULTURED LEAVES OF APRICOT. Acta Horticulturae, 2000, , 659-662.	0.2	0
104	Effect of basal media and growth regulators on the <i>in vitro</i> propagation of apricot (<i>Prunus) Tj ETQq0 0 (</i>	Ͻ rgBT /Ον	erlock 10 Tf 5
105	Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Science, 2000, 158, 61-70.	3.6	80
106	APRICOT BREEDING FOR QUALITY AND SELF-COMPATIBILITY. Acta Horticulturae, 1999, , 105-110.	0.2	1
107	REVIEW OF SELF-INCOMPATIBILITY IN APRICOT. Acta Horticulturae, 1999, , 267-274.	0.2	2
108	Introduction and establishment of apricot in vitro through regeneration of shoots from meristem tips. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 249-253.	2.1	26

#	Article	IF	CITATIONS
109	APRICOT BREEDING FOR SHARKA RESISTANCE AT C.E.B.A.S-C.S.I.C., MURCIA (SPAIN) Acta Horticulturae, 1999, , 153-158.	0.2	28
110	DATES OF BLOOM AND MATURITY OF SEVERAL APRICOT SELECTIONS FROM EUROPEAN BREEDING PROGRAMMES. Acta Horticulturae, 1999, , 159-164.	0.2	3
111	APRICOT MERISTEM TIP CULTURE. Acta Horticulturae, 1999, , 411-416.	0.2	3
112	Medium-term Storage of Apricot Shoot Tips In Vitro by Minimal Growth Method. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 1277-1278.	1.0	16
113	RFLP variability in apricot (Prunus armeniacaL.). Plant Breeding, 1998, 117, 153-158.	1.9	41
114	Amygdalin content in the seeds of several apricot cultivars. Journal of the Science of Food and Agriculture, 1998, 77, 184-186.	3.5	45
115	Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sexual Plant Reproduction, 1998, 11, 153-158.	2.2	65
116	Fructification problems in continental apricot cultivars growing under Mediterranean climate. Ovule development at anthesis in two climatic areas. Journal of Horticultural Science and Biotechnology, 1998, 73, 107-110.	1.9	22
117	APRICOT BREEDING AT THE C.S.I.C. IN MURCIA, SPAIN. Acta Horticulturae, 1998, , 179-182.	0.2	0
118	INHERITANCE OF SELF-COMPATIBILITY IN APRICOT. Acta Horticulturae, 1998, , 243-244.	0.2	0
119	The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. The Journal of Horticultural Science, 1997, 72, 147-154.	0.3	34
120	Inheritance of sexual incompatibility in apricot. Plant Breeding, 1997, 116, 383-386.	1.9	25
121	Evaluation of Fruit Quality of Apricot Cultivars and Selections. International Journal of Fruit Science, 1996, 1, 73-86.	0.3	10
122	Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. Journal of the American Society for Horticultural Science, 1996, 121, 1002-1005.	1.0	43
123	Double kerneled fruits in almond (<i>Prunus dulcis</i> Mill.) as related to preâ€blossom temperatures. Annals of Applied Biology, 1995, 126, 163-168.	2.5	27
124	Embryo-sac development in pollinated and non-pollinated flowers of two apricot cultivars. The Journal of Horticultural Science, 1995, 70, 35-39.	0.3	8
125	SUPERNUMERARY OVULES IN FLOWERS OF APRICOT. Acta Horticulturae, 1995, , 373-378.	0.2	5
126	Year-to-year variation in the developmental stage of the embryo sac at anthesis in flowers of apricot (<i>Prunus armeniaca</i> L.). The Journal of Horticultural Science, 1994, 69, 315-318.	0.3	22

#	Article	IF	CITATIONS
127	Inheritance of Stenospermocarpic Seedlessness in Vitis vinifera L. Journal of Heredity, 1994, 85, 157-160.	2.4	25
128	Observations on Inheritance of Male Sterility in Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 127.	1.0	11
129	Improved efficiency in apricot breeding: Effects of embryo development and nutrient media on in vitro germination and seedling establishment. Plant Cell, Tissue and Organ Culture, 1993, 35, 217-222.	2.3	19
130	Apricot embryo-sac development in relation to fruit set. The Journal of Horticultural Science, 1993, 68, 203-208.	0.3	30
131	Self- and Cross-compatibility among Apricot Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 148-150.	1.0	32
132	Influence of temperature on the <i>in vitro</i> germination of pollen of apricot <i>(Prunus) Tj ETQq0 0 0 rgBT /Ove</i>	rl <u>ock</u> 10 T	f 50 542 Td
133	Effective pollination period as related to stigma receptivity in apricot. Scientia Horticulturae, 1992, 52, 77-83.	3.6	36
134	Stigma receptivity and style performance in several apricot cultivars. The Journal of Horticultural Science, 1991, 66, 19-25.	0.3	26
135	Effective pollination period in apricot (Prunus armeniaca L.) varieties. Annals of Applied Biology, 1991, 119, 533-539.	2.5	36