
Lorenzo Burgos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329883/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. Journal of Experimental Botany, 2011, 62, 2599-2613.	4.8	227
2	Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 2008, 64, 162-170.	4.2	199
3	Self-Compatibility of Two Apricot Selections Is Associated with Two Pollen-Part Mutations of Different Nature. Plant Physiology, 2006, 142, 629-641.	4.8	129
4	Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnology Journal, 2013, 11, 976-985.	8.3	122
5	Transformation of fruit trees. Useful breeding tool or continued future prospect?. Transgenic Research, 2005, 14, 15-26.	2.4	106
6	Melon RNA interference (RNAi) lines silenced for <i>Cmâ€eIF4E</i> show broad virus resistance. Molecular Plant Pathology, 2012, 13, 755-763.	4.2	105
7	Analysis of the S-locus structure in Prunus armeniaca L. Identification ofS-haplotype specific S-RNase and F-box genes. Plant Molecular Biology, 2004, 56, 145-157.	3.9	103
8	Effects of Postharvest Putrescine Treatment on Extending Shelf Life and Reducing Mechanical Damage in Apricot. Journal of Food Science, 2002, 67, 1706-1712.	3.1	91
9	Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Science, 2000, 158, 61-70.	3.6	80
10	Exogenous Polyamines and Gibberellic Acid Effects on Peach (Prunus persica L.) Storability Improvement. Journal of Food Science, 2000, 65, 288-294.	3.1	72
11	Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Reports, 2003, 21, 1167-1174.	5.6	68
12	Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sexual Plant Reproduction, 1998, 11, 153-158.	2.2	65
13	Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases. Journal of Plant Physiology, 2011, 168, 1858-1865.	3.5	64
14	Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols. Plant Cell Reports, 2010, 29, 1203-1213.	5.6	61
15	Different media requirements for micropropagation of apricot cultivars. Plant Cell, Tissue and Organ Culture, 2000, 63, 133-141.	2.3	59
16	Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. Journal of Applied Phycology, 2017, 29, 1081-1093.	2.8	59
17	Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Reports, 2008, 27, 1317-1324.	5.6	54
18	Vertical transmission of Prunus necrotic ringspot virus: hitch-hiking from gametes to seedling. Journal of General Virology, 2009, 90, 1767-1774.	2.9	46

#	Article	IF	CITATIONS
19	Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu,Znâ€superoxide dismutase. Plant Pathology, 2012, 61, 858-866.	2.4	46
20	Amygdalin content in the seeds of several apricot cultivars. Journal of the Science of Food and Agriculture, 1998, 77, 184-186.	3.5	45
21	Inheritance of resistance to plum pox potyvirus (PPV) in apricot, Prunus armeniaca. Plant Breeding, 2000, 119, 161-164.	1.9	45
22	Identification of Self-(in)compatibility Alleles in Apricot by PCR and Sequence Analysis. Journal of the American Society for Horticultural Science, 2005, 130, 893-898.	1.0	45
23	Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation. BMC Biotechnology, 2010, 10, 53.	3.3	44
24	Detecting Cross-incompatibility of Three North American Apricot Cultivars and Establishing the First Incompatibility Group in Apricot. Journal of the American Society for Horticultural Science, 1996, 121, 1002-1005.	1.0	43
25	RFLP variability in apricot (Prunus armeniacaL.). Plant Breeding, 1998, 117, 153-158.	1.9	41
26	Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell, Tissue and Organ Culture, 2005, 82, 105-111.	2.3	41
27	<i>Prunus necrotic ringspot virus</i> Early Invasion and Its Effects on Apricot Pollen Grain Performance. Phytopathology, 2007, 97, 892-899.	2.2	39
28	Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Scientific Reports, 2017, 7, 332.	3.3	38
29	Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus) Tj ETQq1 1 0.	7 846 14 rg	gB 37 Overlo <mark>c</mark> i
30	Effective pollination period in apricot (Prunus armeniaca L.) varieties. Annals of Applied Biology, 1991, 119, 533-539.	2.5	36
31	Effective pollination period as related to stigma receptivity in apricot. Scientia Horticulturae, 1992, 52, 77-83.	3.6	36
32	Apricot. , 2012, , 415-458.		35
33	The self-compatibility trait of the main apricot cultivars and new selections from breeding programmes. The Journal of Horticultural Science, 1997, 72, 147-154.	0.3	34
34	Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breeding, 2002, 121, 343-347.	1.9	34
35	Apricot flower bud development and abscission related to chilling, irrigation and type of shoots. Scientia Horticulturae, 2003, 98, 265-276.	3.6	34
36	Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Scientia Horticulturae, 2004, 102, 397-406.	3.6	34

#	Article	IF	CITATIONS
37	Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. Plant Cell Reports, 2009, 28, 1781-1790.	5.6	34
38	Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. Journal of Plant Physiology, 2013, 170, 625-632.	3.5	33
39	Self- and Cross-compatibility among Apricot Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 148-150.	1.0	32
40	Control of hyperhydricity in micropropagated apricot cultivars. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 250-254.	2.1	31
41	Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants, 2020, 9, 971.	3.5	31
42	Apricot embryo-sac development in relation to fruit set. The Journal of Horticultural Science, 1993, 68, 203-208.	0.3	30
43	Effect of basal media and growth regulators on the <i>in vitro</i> propagation of apricot (<i>Prunus) Tj ETQq1</i>	1 0.784314 1.9	FrgBT /Overlo
44	Factors affecting gene transfer efficiency to apricot leaves during early <i>Agrobacterium</i> -mediated transformation steps. Journal of Horticultural Science and Biotechnology, 2004, 79, 704-712.	1.9	30
45	A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell, Tissue and Organ Culture, 2012, 110, 337-346.	2.3	30
46	A new strategy to enhance the biosynthesis of trans-resveratrol by overexpressing stilbene synthase gene in elicited Vitis vinifera cell cultures. Plant Physiology and Biochemistry, 2017, 113, 141-148.	5.8	30
47	Variability in the developmental stage of apricot ovules at anthesis and its relationship with fruit set. Annals of Applied Biology, 2002, 141, 147-152.	2.5	29
48	Influence of temperature on the <i>in vitro</i> germination of pollen of apricot <i>(Prunus) Tj ETQq0 0 0 rgBT /C</i>	Dverlgck 10	0 Tf 50 302 Td
49	APRICOT BREEDING FOR SHARKA RESISTANCE AT C.E.B.A.S-C.S.I.C., MURCIA (SPAIN) Acta Horticulturae, 1999, , 153-158.	0.2	28
50	Double kerneled fruits in almond (<i>Prunus dulcis</i> Mill.) as related to preâ€blossom temperatures. Annals of Applied Biology, 1995, 126, 163-168.	2.5	27
51	Stigma receptivity and style performance in several apricot cultivars. The Journal of Horticultural Science, 1991, 66, 19-25.	0.3	26
52	Introduction and establishment of apricot in vitro through regeneration of shoots from meristem tips. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 249-253.	2.1	26
53	Inheritance of Stenospermocarpic Seedlessness in Vitis vinifera L. Journal of Heredity, 1994, 85, 157-160.	2.4	25
54	Inheritance of sexual incompatibility in apricot. Plant Breeding, 1997, 116, 383-386.	1.9	25

#	Article	IF	CITATIONS
55	The influence of polyamines on apricot ovary development and fruit set. Annals of Applied Biology, 2006, 149, 27-33.	2.5	25
56	Phosphomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.). Plant Cell, Tissue and Organ Culture, 2013, 113, 189-197.	2.3	24
57	Year-to-year variation in the developmental stage of the embryo sac at anthesis in flowers of apricot (<i>Prunus armeniaca</i> L.). The Journal of Horticultural Science, 1994, 69, 315-318.	0.3	22
58	Fructification problems in continental apricot cultivars growing under Mediterranean climate. Ovule development at anthesis in two climatic areas. Journal of Horticultural Science and Biotechnology, 1998, 73, 107-110.	1.9	22
59	Construction and application of a bacterial artificial chromosome (BAC) library of Prunus armeniaca L. for the identification of clones linked to the self-incompatibility locus. Molecular Genetics and Genomics, 2003, 269, 685-691.	2.1	22
60	Adventitious shoot regeneration from hypocotyl slices of mature apricot (Prunus armeniaca L.) seeds: A feasible alternative for apricot genetic engineering. Scientia Horticulturae, 2011, 128, 457-464.	3.6	21
61	Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance. Annals of Botany, 2016, 117, 1121-1131.	2.9	21
62	Improved efficiency in apricot breeding: Effects of embryo development and nutrient media on in vitro germination and seedling establishment. Plant Cell, Tissue and Organ Culture, 1993, 35, 217-222.	2.3	19
63	Searching for molecular markers linked to male sterility and self-compatibility in apricot. Plant Breeding, 2000, 119, 157-160.	1.9	17
64	The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptll-transformed leaf tissues. Plant Cell, Tissue and Organ Culture, 2005, 80, 271-276.	2.3	17
65	An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Science, 2008, 175, 777-783.	3.6	17
66	Combination of site-specific recombination and a conditional selective marker gene allows for the production of marker-free tobacco plants. Plant Cell, Tissue and Organ Culture, 2014, 116, 205-215.	2.3	17
67	Greenhouse evaluation confirms in vitro sharka resistance of genetically engineered h-UTR/P1 plum plants. Plant Cell, Tissue and Organ Culture, 2015, 120, 791-796.	2.3	17
68	Recent trends and comprehensive appraisal for the biotechnological production of trans-resveratrol and its derivatives. Phytochemistry Reviews, 2018, 17, 491-508.	6.5	17
69	Ovule differences between single-kernelled and double-kernelled fruits in almond (Prunus dulcis). Annals of Applied Biology, 2000, 136, 291-295.	2.5	16
70	Medium-term Storage of Apricot Shoot Tips In Vitro by Minimal Growth Method. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 1277-1278.	1.0	16
71	`Rojo PasioÌn' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1490-1491.	1.0	16
72	Characterization of Jatropha curcas accessions based in plant growth traits and oil quality. Industrial Crops and Products, 2017, 109, 693-698.	5.2	15

#	Article	IF	CITATIONS
73	Media derived from brown seaweeds Cystoseira myriophylloides and Fucus spiralis for in vitro plant tissue culture. Plant Cell, Tissue and Organ Culture, 2017, 128, 437-446.	2.3	15
74	Short communication. Influence of storage temperature on the viability of sweet cherry pollen. Spanish Journal of Agricultural Research, 2007, 5, 86.	0.6	15
75	Isolation and culture of mesophyll protoplast from apricot. Journal of Horticultural Science and Biotechnology, 2003, 78, 624-628.	1.9	14
76	Cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase improve seed germination, plant growth, nutrient uptake and drought tolerance in tobacco. Theoretical and Experimental Plant Physiology, 2015, 27, 215-226.	2.4	12
77	Production of transgenic diploid Cucumis melo plants. Plant Cell, Tissue and Organ Culture, 2017, 130, 323-333.	2.3	11
78	Observations on Inheritance of Male Sterility in Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 1994, 29, 127.	1.0	11
79	Review. Flower biology in apricot and its implications for breeding. Spanish Journal of Agricultural Research, 2004, 2, 227.	0.6	11
80	Consequences to fertilization of the developmental stage of apricot ovules at anthesis. Journal of Horticultural Science and Biotechnology, 2000, 75, 662-666.	1.9	10
81	Contributing to the knowledge of the fertilisation process in four apricot cultivars. Scientia Horticulturae, 2004, 102, 387-396.	3.6	10
82	Self- and cross-(in)compatibility between important apricot cultivars in northwest Iran. Journal of Horticultural Science and Biotechnology, 2006, 81, 513-517.	1.9	10
83	Towards the valorization of the invasive seaweeds Caulerpa cylindracea and Asparagopsis taxiformis in the Mediterranean Sea: applications for in vitro plant regeneration and crop protection. Journal of Applied Phycology, 2019, 31, 1403-1413.	2.8	10
84	Evaluation of Fruit Quality of Apricot Cultivars and Selections. International Journal of Fruit Science, 1996, 1, 73-86.	0.3	10
85	'Dorada' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1919-1920.	1.0	10
86	Antimicrobial Activity of two Semisynthetic Triterpene Derivatives from Euphorbia officinarum Latex against Fungal and Bacterial Phytopathogens. Natural Product Communications, 2017, 12, 331-336.	0.5	10
87	Efficient in vitro shoot regeneration from mature apricot (Prunus armeniaca L.) cotyledons. Scientia Horticulturae, 2013, 160, 300-305.	3.6	9
88	Silencing of <i>Agrobacterium tumefaciens</i> oncogenes <i>ipt</i> and <i>iaaM</i> induces resistance to crown gall disease in plum but not in apricot. Pest Management Science, 2017, 73, 2163-2173.	3.4	9
89	Embryo-sac development in pollinated and non-pollinated flowers of two apricot cultivars. The Journal of Horticultural Science, 1995, 70, 35-39.	0.3	8
90	Production of transgenic apricot plants from hypocotyl segments of mature seeds. Scientia Horticulturae, 2015, 197, 144-149.	3.6	8

#	Article	IF	CITATIONS
91	Semisynthetic Triterpenes Derived from Euphorbia officinarum as Plant Growth Promoters and Inducers of Disease Resistance. Journal of Plant Growth Regulation, 2019, 38, 262-272.	5.1	8
92	Acetylsalicylic acid improved antioxidative status and cold storage of encapsulated nodal segments of neem (Azadirachta indica A. Juss.). Plant Cell, Tissue and Organ Culture, 2021, 144, 261-270.	2.3	8
93	Apricot (Prunus armeniaca L.). Methods in Molecular Biology, 2015, 1224, 111-119.	0.9	8
94	`Murciana' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 254-255.	1.0	8
95	Effects of growth retardants on sprouting and development of apricot (Prunus armeniaca L.) and neem (Azarchta indica A. Juss.) nodal buds. Plant Cell, Tissue and Organ Culture, 2015, 122, 285-297.	2.3	7
96	Antimicrobial Activity of two Semisynthetic Triterpene Derivatives from <i>Euphorbia Officinarum</i> Latex Against Fungal and Bacterial Phytopathogens. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	7
97	Apricot micropropagation. , 2007, , 267-278.		7
98	NEW APRICOT CULTIVARS FROM CEBAS-CSIC (MURCIA, SPAIN) BREEDING PROGRAMME. Acta Horticulturae, 2010, , 113-118.	0.2	6
99	A shortâ€length single chimeric transgene induces simultaneous silencing of <i>Agrobacterium tumefaciens</i> oncogenes and resistance to crown gall. Plant Pathology, 2012, 61, 1073-1081.	2.4	6
100	`Selene' Apricot. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1492-1493.	1.0	6
101	<scp><i>A</i></scp> <i>grobacterium</i> â€mediated transformation of <scp><i>V</i></scp> <i>i>itis</i> Cv. Monastrell suspensionâ€cultured cells: Determination of critical parameters. Biotechnology Progress, 2016, 32, 725-734.	2.6	5
102	Application of Ascophyllum nodosum-Based Soluble Extract on Micropropagation and Regeneration of Nicotiana benthamiana and Prunus domestica. Plants, 2021, 10, 1354.	3.5	5
103	SUPERNUMERARY OVULES IN FLOWERS OF APRICOT. Acta Horticulturae, 1995, , 373-378.	0.2	5
104	â€~Estrella' and â€~Sublime' Apricot Cultivars. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 469-470.	1.0	5
105	PRODUCTION OF MARKER-FREE TRANSGENIC PLANTS AFTER TRANSFORMATION OF APRICOT CULTIVARS. Acta Horticulturae, 2006, , 225-228.	0.2	4
106	USING MAT VECTOR SYSTEM TO PRODUCE MARKER-FREE TRANSFORMED APRICOT PLANTS. Acta Horticulturae, 2007, , 607-612.	0.2	4
107	Hydrogen peroxide generated by over-expression of cytosolic superoxide dismutase in transgenic plums enhances bacterial canker resistance and modulates plant defence responses. Molecular Biology Reports, 2020, 47, 5889-5901.	2.3	3
108	DATES OF BLOOM AND MATURITY OF SEVERAL APRICOT SELECTIONS FROM EUROPEAN BREEDING PROGRAMMES. Acta Horticulturae, 1999, , 159-164.	0.2	3

#	Article	IF	CITATIONS
109	APRICOT MERISTEM TIP CULTURE. Acta Horticulturae, 1999, , 411-416.	0.2	3
110	VARIABILITY IN CULTIVAR CHARACTERISTICS AS FACTORS INFLUENCING PRODUCTIVITY IN APRICOT. Acta Horticulturae, 2006, , 267-270.	0.2	3
111	REVIEW OF SELF-INCOMPATIBILITY IN APRICOT. Acta Horticulturae, 1999, , 267-274.	0.2	2
112	New Transformation Technologies for Trees. Forestry Sciences, 2016, , 31-66.	0.4	2
113	Improving Adventitious Shoot Regeneration and Transient Agrobacterium-Mediated Transformation of Apricot (Prunus armeniaca L.) Hypocotyl Sections. Agronomy, 2021, 11, 1338.	3.0	2
114	APRICOT BREEDING FOR QUALITY AND SELF-COMPATIBILITY. Acta Horticulturae, 1999, , 105-110.	0.2	1
115	FIELD PERFORMANCE DIFFERENCES IN THREE APRICOT CULTIVARS PROPAGATED BY TISSUE CULTURE OR BY GRAFTING. Acta Horticulturae, 2006, , 255-260.	0.2	1
116	REGENERATION OF TRANSFORMED APRICOT PLANTS FROM LEAVES OF A COMMERCIAL CULTIVAR. Acta Horticulturae, 2006, , 233-236.	0.2	1
117	CREATING MARKER-FREE PLANTS BY COMBINING SITE-SPECIFIC RECOMBINATION AND THE DAO1 GENE THAT ALLOWS BOTH POSITIVE AND NEGATIVE SELECTION. Acta Horticulturae, 2012, , 429-435.	0.2	1
118	A SELECTION STRATEGY TO OBTAIN TRANSFORMED APRICOT PLANTS. Acta Horticulturae, 2006, , 771-776.	0.2	1
119	A PRELIMINARY STUDY ON GENOTYPE-INDEPENDENT AGROBACTERIUM-MEDIATED TRANSFORMATION METHOD TO OBTAIN GENETICALLY ENGINEERED APRICOT PLANTS. Acta Horticulturae, 2009, , 369-374.	0.2	1
120	Protection of Solanum lycopesicum induced by chitosan and chitosan nano-hydroxyapatite against Pepino mosaic virus and Verticillium dahliae. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102386.	3.1	1
121	ADVENTITIOUS SHOOT REGENERATION FROM IN VITRO CULTURED LEAVES OF APRICOT. Acta Horticulturae, 2000, , 659-662.	0.2	0
122	INFLUENCE OF EXPLANT TYPE (MERISTEM VS. AXILLARY SHOOTS) ON THE INTRODUCTION AND ESTABLISHMENT IN VITRO OF FOUR APRICOT CULTIVARS. Acta Horticulturae, 2006, , 229-232.	0.2	0
123	REGENERATION-PROMOTING GENES IMPROVE TRANSFORMATION EFFICIENCY IN APRICOT. Acta Horticulturae, 2006, , 95-100.	0.2	0
124	EFFICIENT TRANSFORMATION OF COMMERCIAL APRICOT CULTIVARS AND REGENERATION OF TRANSFORMED PLANTS. Acta Horticulturae, 2007, , 647-651.	0.2	0
125	AGROBACTERIUM-MEDIATED TRANSFORMATION OF A WALNUT CULTIVAR. Acta Horticulturae, 2009, , 381-386.	0.2	0
126	Bud growth regulator profiles in peach. Acta Horticulturae, 2018, , 253-256.	0.2	0

#	Article	IF	CITATIONS
127	NEW SPANISH APRICOT SELECTIONS. Acta Horticulturae, 2006, , 399-402.	0.2	0
128	SELF-(IN)COMPATIBILITY IN PRUNUS ARMENIACA L.: ANALYSIS OF THE S-LOCUS STRUCTURE AND IDENTIFICATION OF S-HAPLOTYPE SPECIFIC S-RNASE. Acta Horticulturae, 2006, , 213-216.	0.2	0
129	RELATIONSHIP BETWEEN POLYAMINES AND OVULE DEVELOPMENT IN APRICOT OVARIES AT DIFFERENT BLOOM STAGES. Acta Horticulturae, 2006, , 71-74.	0.2	0
130	PRELIMINARY MOLECULAR EVIDENCE THAT QUANTITATIVE POLYMERASE CHAIN REACTION DETECTS CHIMERAS IN TRANSGENIC PLANTS. Acta Horticulturae, 2009, , 361-367.	0.2	0
131	DESIGN AND CONSTRUCTION OF A TRANSFORMATION VECTOR TO INDUCE CROWN GALL DISEASE RESISTANCE. Acta Horticulturae, 2012, , 405-409.	0.2	0
132	NEW PROMISING HIGH QUALITY, SHARKA RESISTANT APRICOT CULTIVARS FROM CEBAS-CSIC (MURCIA, SPAIN) BREEDING PROGRAM. Acta Horticulturae, 2012, , 53-56.	0.2	0
133	APRICOT BREEDING AT THE C.S.I.C. IN MURCIA, SPAIN. Acta Horticulturae, 1998, , 179-182.	0.2	0
134	INHERITANCE OF SELF-COMPATIBILITY IN APRICOT. Acta Horticulturae, 1998, , 243-244.	0.2	0
135	Preliminary results on virus and viroids elimination in apricot through in vitro thermo- and cold-therapy. Acta Horticulturae, 2020, , 119-122.	0.2	0