Alexander V Ljubimov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8329282/publications.pdf

Version: 2024-02-01

103 papers

5,786 citations

42 h-index 91884 69 g-index

108 all docs 108 docs citations

108 times ranked 6449 citing authors

#	Article	IF	Citations
1	Gene Therapy in the Anterior Eye Segment. Current Gene Therapy, 2022, 22, 104-131.	2.0	37
2	SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response. Ocular Surface, 2022, 23, 184-194.	4.4	20
3	The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Progress in Retinal and Eye Research, 2022, 89, 101039.	15.5	47
4	Regulatory role of miR-146a in corneal epithelial wound healing via its inflammatory targets in human diabetic cornea. Ocular Surface, 2022, 25, 92-100.	4.4	12
5	Novel nanopolymer RNA therapeutics normalize human diabetic corneal wound healing and epithelial stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102332.	3.3	16
6	Systemic diseases and the cornea. Experimental Eye Research, 2021, 204, 108455.	2.6	46
7	Multifunctional Nanopolymers for Blood–Brain Barrier Delivery and Inhibition of Glioblastoma Growth through EGFR/EGFRvIII, c-Myc, and PD-1. Nanomaterials, 2021, 11, 2892.	4.1	9
8	Retinal vascular abnormalities and blood-retinal barrier breakdown in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e056603.	0.8	0
9	Integrated Transcriptome and Proteome Analyses Reveal the Regulatory Role of miR-146a in Human Limbal Epithelium via Notch Signaling. Cells, 2020, 9, 2175.	4.1	11
	Elitibali Epitatonani via rivotori orginani gi osmoj svovjivi sa s		
10	Stem cells in the eye. , 2020, , 1115-1133.		O
10		7.7	0
	Stem cells in the eye. , 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta	7.7	
11	Stem cells in the eye., 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma		113
11 12	Stem cells in the eye., 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 2019, 10, 3850. TMIC-47. INHIBITION OF GLIOBLASTOMA GROWTH THROUGH TUMOR-MICROENVIRONMENT CROSSTALK	12.8	113
11 12 13	Stem cells in the eye., 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 2019, 10, 3850. TMIC-47. INHIBITION OF GLIOBLASTOMA GROWTH THROUGH TUMOR-MICROENVIRONMENT CROSSTALK USING CLINICALLY SUITABLE NANOBIOCONJUGATE. Neuro-Oncology, 2019, 21, vi258-vi258. Blockade of a Laminin-411–Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma	12.8	113 199 0
11 12 13	Stem cells in the eye., 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 2019, 10, 3850. TMIC-47. INHIBITION OF GLIOBLASTOMA GROWTH THROUGH TUMOR-MICROENVIRONMENT CROSSTALK USING CLINICALLY SUITABLE NANOBIOCONJUGATE. Neuro-Oncology, 2019, 21, vi258-vi258. Blockade of a Laminin-411–Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk. Cancer Research, 2019, 79, 1239-1251.	12.8 1.2 0.9	113 199 0 61
11 12 13 14	Stem cells in the eye., 2020, , 1115-1133. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathologica, 2020, 139, 813-836. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nature Communications, 2019, 10, 3850. TMIC-47. INHIBITION OF GLIOBLASTOMA GROWTH THROUGH TUMOR-MICROENVIRONMENT CROSSTALK USING CLINICALLY SUITABLE NANOBIOCONJUGATE. Neuro-Oncology, 2019, 21, vi258-vi258. Blockade of a Laminin-411–Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk. Cancer Research, 2019, 79, 1239-1251. In Vitro and In Vivo Proteomic Comparison of Human Neural Progenitor Cellâ€Induced Photoreceptor Survival. Proteomics, 2019, 19, e1800213. The Absence of DHHC3 Affects Primary and Latent Herpes Simplex Virus 1 Infection. Journal of Virology,	12.8 1.2 0.9	113 199 0 61 8

#	Article	IF	CITATIONS
19	Exosomes from normal and diabetic human corneolimbal keratocytes differentially regulate migration, proliferation and marker expression of limbal epithelial cells. Scientific Reports, 2018, 8, 15173.	3.3	48
20	Diabetic complications in the cornea. Vision Research, 2017, 139, 138-152.	1.4	162
21	Covalent nano delivery systems for selective imaging and treatment of brain tumors. Advanced Drug Delivery Reviews, 2017, 113, 177-200.	13.7	67
22	Cell Therapy for Age-Related Macular Degeneration: A New Vision for the Bone Marrow?. Molecular Therapy, 2017, 25, 832-833.	8.2	0
23	Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells, 2017, 35, 2105-2114.	3.2	73
24	Genome-wide analysis suggests a differential microRNA signature associated with normal and diabetic human corneal limbus. Scientific Reports, 2017, 7, 3448.	3.3	32
25	Glaucoma, Stem Cells, and Gene Therapy: Where Are We Now?. International Journal of Stem Cells, 2017, 10, 119-128.	1.8	25
26	Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. Journal of Controlled Release, 2016, 244, 14-23.	9.9	40
27	Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells. Journal of Visualized Experiments, 2016, , e54058.	0.3	16
28	Stem cell therapies in the treatment of diabetic retinopathy and keratopathy. Experimental Biology and Medicine, 2016, 241, 559-568.	2.4	23
29	Progress in corneal wound healing. Progress in Retinal and Eye Research, 2015, 49, 17-45.	15.5	554
30	MRI Virtual Biopsy and Treatment of Brain Metastatic Tumors with Targeted Nanobioconjugates: Nanoclinic in the Brain. ACS Nano, 2015, 9, 5594-5608.	14.6	78
31	Persistence of reduced expression of putative stem cell markers and slow wound healing in cultured diabetic limbal epithelial cells. Molecular Vision, 2015, 21, 1357-67.	1.1	9
32	Advances in Imaging: Brain Tumors to Alzheimer's Disease. The Bangkok Medical Journal, 2015, 10, 83-97.	0.0	1
33	Targeting miR-146a to Treat Delayed Wound Healing in Human Diabetic Organ-Cultured Corneas. PLoS ONE, 2014, 9, e114692.	2.5	61
34	Ocular Changes in TgF344-AD Rat Model of Alzheimer's Disease. , 2014, 55, 523.		125
35	Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Experimental Eye Research, 2014, 129, 66-73.	2.6	24
36	Differentiation of Human Limbal-Derived Induced Pluripotent Stem Cells Into Limbal-Like Epithelium. Stem Cells Translational Medicine, 2014, 3, 1002-1012.	3.3	74

#	Article	IF	Citations
37	Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. Journal of Drug Targeting, 2013, 21, 956-967.	4.4	48
38	Enhanced Wound Healing, Kinase and Stem Cell Marker Expression in Diabetic Organ-Cultured Human Corneas Upon MMP-10 and Cathepsin F Gene Silencing., 2013, 54, 8172.		39
39	Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: Comparison with human brain tumors. Experimental and Toxicologic Pathology, 2013, 65, 1063-1071.	2.1	22
40	Differentially Expressed Wound Healing-Related microRNAs in the Human Diabetic Cornea. PLoS ONE, 2013, 8, e84425.	2.5	74
41	A Simple Alkaline Method for Decellularizing Human Amniotic Membrane for Cell Culture. PLoS ONE, 2013, 8, e79632.	2.5	53
42	Focus on Molecules: Protein kinase CK2. Experimental Eye Research, 2012, 101, 111-112.	2.6	4
43	Cell rounding in cultured human astrocytes and vascular endothelial cells upon inhibition of CK2 is mediated by actomyosin cytoskeleton alterations. Journal of Cellular Biochemistry, 2012, 113, 2948-2956.	2.6	13
44	Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neurolmage, 2011, 54, S204-S217.	4.2	543
45	Treatment of cultured human astrocytes and vascular endothelial cells with protein kinase CK2 inhibitors induces early changes in cell shape and cytoskeleton. Molecular and Cellular Biochemistry, 2011, 349, 125-137.	3.1	25
46	Polymalic Acid–Based Nanobiopolymer Provides Efficient Systemic Breast Cancer Treatment by Inhibiting both HER2/neu Receptor Synthesis and Activity. Cancer Research, 2011, 71, 1454-1464.	0.9	61
47	Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Molecular Vision, 2011, 17, 2177-90.	1.1	35
48	Exacerbation of corneal scarring in HSV-1 gK-immunized mice correlates with elevation of CD8+CD25+T cells in corneas of ocularly infected mice. Virology, 2010, 399, 11-22.	2.4	21
49	Normalization of Wound Healing and Diabetic Markers in Organ Cultured Human Diabetic Corneas by Adenoviral Delivery of <i>c-Met</i>		59
50	Inhibition of brain tumor growth by intravenous poly(\hat{l}^2 - <scp> </scp> -malic acid) nanobioconjugate with pH-dependent drug release. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18143-18148.	7.1	156
51	Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes. Brain Research Bulletin, 2010, 81, 262-272.	3.0	25
52	Editorial for the special issue of Brain Research Bulletin "Advances in corneal and retinal research". Brain Research Bulletin, 2010, 81, 197.	3.0	0
53	Phosphodiesterase Type 5 Inhibitors Increase Herceptin Transport and Treatment Efficacy in Mouse Metastatic Brain Tumor Models. PLoS ONE, 2010, 5, e10108.	2.5	45
54	High Glucose Suppresses Epidermal Growth Factor Receptor/Phosphatidylinositol 3-Kinase/Akt Signaling Pathway and Attenuates Corneal Epithelial Wound Healing. Diabetes, 2009, 58, 1077-1085.	0.6	144

#	Article	IF	Citations
55	ZBED4, a BED-Type Zinc-Finger Protein in the Cones of the Human Retina. , 2009, 50, 3580.		16
56	Inhibition of protein kinase CK2 suppresses angiogenesis and hematopoietic stem cell recruitment to retinal neovascularization sites. Molecular and Cellular Biochemistry, 2008, 316, 177-186.	3.1	61
57	Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine, 2008, 3, 247-265.	3.3	73
58	Alterations of Extracellular Matrix Components and Proteinases in Human Corneal Buttons With INTACS for Post-Laser In Situ Keratomileusis Keratectasia and Keratoconus. Cornea, 2008, 27, 565-573.	1.7	37
59	Growth Factor Synergy in Angiogenesis. , 2008, , 289-310.		3
60	Erythropoietin: when liability becomes asset in neurovascular repair. Journal of Clinical Investigation, 2008, 118, 467-70.	8.2	17
61	Antagonism of the Growth Hormone Axis as a Therapeutic Strategy for Diabetic Retinopathy. , 2008, , 449-463.		0
62	Biodegradable Multitargeting Nanoconjugates for Drug Delivery. Fundamental Biomedical Technologies, 2008, , 233-262.	0.2	0
63	Compositional Differences between Infant and Adult Human Corneal Basement Membranes., 2007, 48, 4989.		171
64	Immunohistochemical Evaluation of Two Corneal Buttons With Post-LASIK Keratectasia. Cornea, 2007, 26, 983-991.	1.7	11
65	Retinal and choroidal microangiopathies: Therapeutic opportunities. Microvascular Research, 2007, 74, 131-144.	2.5	60
66	Expression of Protein Kinase CK2 in Astroglial Cells of Normal and Neovascularized Retina. American Journal of Pathology, 2006, 168, 1722-1736.	3.8	59
67	Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Frontiers in Bioscience - Landmark, 2006, 11, 81.	3.0	64
68	Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis, 2006, 9, 183-191.	7.2	53
69	Proteinase and Growth Factor Alterations Revealed by Gene Microarray Analysis of Human Diabetic Corneas., 2005, 46, 3604.		75
70	P450 in the Angiogenesis Affair. American Journal of Pathology, 2005, 166, 341-344.	3.8	8
71	Overexpression of \hat{l}^21 -chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Research, 2005, 7, R411-21.	5.0	57
72	Involvement of Protein Kinase CK2 in Angiogenesis and Retinal Neovascularization., 2004, 45, 4583.		73

#	Article	IF	Citations
73	Altered Expression of Aquaporins in Bullous Keratopathy and Fuchs' Dystrophy Corneas. Journal of Histochemistry and Cytochemistry, 2004, 52, 1341-1350.	2.5	43
74	Altered Expression of Aquaporins in Bullous Keratopathy and Fuchs' Dystrophy Corneas. Journal of Histochemistry and Cytochemistry, 2004, 52, 1341-1350.	2.5	6
75	Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Experimental Eye Research, 2003, 77, 211-217.	2.6	81
76	Insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) modulate tenascin-C and fibrillin-1 in bullous keratopathy stromal cells in vitro. Experimental Eye Research, 2003, 77, 537-546.	2.6	21
77	Fibronectin Fragments Promote Human Retinal Endothelial Cell Adhesion and Proliferation and ERK Activation through $\hat{l}\pm5\hat{l}^21$ Integrin and PI 3-Kinase. , 2003, 44, 1704.		74
78	Antisense inhibition of laminin-8 expression reduces invasion of human gliomas in vitro. Molecular Cancer Therapeutics, 2003, 2, 985-94.	4.1	48
79	Extracellular Matrix and Matrix Metalloproteinase Changes in Human Corneas After Complicated Laser-Assisted In Situ Keratomileusis (LASIK). Cornea, 2002, 21, 95-100.	1.7	29
80	Extracellular Matrix and Na + ,K + -ATPase in Human Corneas Following Cataract Surgery. Cornea, 2002, 21, 74-80.	1.7	26
81	Effects of Angiogenic Growth Factor Combinations on Retinal Endothelial Cellsâ [*] †. Experimental Eye Research, 2002, 74, 523-535.	2.6	99
82	Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture. Investigative Ophthalmology and Visual Science, 2002, 43, 2758-66.	3.3	36
83	Altered Expression of Growth Factors and Cytokines in Keratoconus, Bullous Keratopathy and Diabetic Human Corneas. Experimental Eye Research, 2001, 73, 179-189.	2.6	60
84	Overexpression of Matrix Metalloproteinase-10 and Matrix Metalloproteinase-3 in Human Diabetic Corneas. American Journal of Pathology, 2001, 158, 723-734.	3.8	103
85	Identification of Cell Types in Human Diseased Corneas. Cornea, 2001, 20, 309-316.	1.7	28
86	Increased Expression of Tenascin-C-binding Epithelial Integrins in Human Bullous Keratopathy Corneas. Journal of Histochemistry and Cytochemistry, 2001, 49, 1341-1350.	2.5	22
87	Basement membrane and growth factor gene expression in normal and diabetic human retinas. Current Eye Research, 1999, 18, 490-499.	1.5	81
88	Extracellular Matrix Changes in Human Corneas After Radial Keratotomy. Experimental Eye Research, 1998, 67, 265-272.	2.6	45
89	Matrix Metalloproteinase Expression in Human Retinal Microvascular Cells. Diabetes, 1998, 47, 1311-1317.	0.6	46
90	Human Corneal Epithelial Basement Membrane and Integrin Alterations in Diabetes and Diabetic Retinopathy ¹ . Journal of Histochemistry and Cytochemistry, 1998, 46, 1033-1041.	2.5	107

#	Article	IF	CITATIONS
91	Novel Splice Variants of Human Tenascin-C mRNA Identified in Normal and Bullous Keratopathy Corneas. Cornea, 1998, 17, 326-332.	1.7	16
92	Increased Expression of Fibrillin-1 in Human Corneas with Bullous Keratopathy. Cornea, 1998, 17, 309-314.	1.7	27
93	Proteolysis Regulates Exposure of the IIICS-1 Adhesive Sequence in Plasma Fibronectinâ€. Biochemistry, 1996, 35, 10913-10921.	2.5	38
94	Basement membrane abnormalities in human eyes with diabetic retinopathy Journal of Histochemistry and Cytochemistry, 1996, 44, 1469-1479.	2.5	152
95	Antibody mapping and tissue localization of globular and cysteine-rich regions of perlecan domain III Journal of Histochemistry and Cytochemistry, 1995, 43, 955-963.	2.5	37
96	Myoepithelial and basement membrane antigens in benign and malignant human breast tumors. International Journal of Cancer, 1993, 53, 269-277.	5.1	70
97	Distribution of individual components of basement membrane in human colon polyps and adenocarcinomas as revealed by monoclonal antibodies. International Journal of Cancer, 1992, 50, 562-566.	5.1	44
98	Distribution, ultrastructural localization, and ontogeny of the core protein of a heparan sulfate proteoglycan in human skin and other basement membranes Journal of Histochemistry and Cytochemistry, 1989, 37, 961-970.	2. 5	44
99	Entactin: ultrastructural localization of an ubiquitous basement membrane glycoprotein in mouse skin. Archives of Dermatological Research, 1989, 281, 427-432.	1.9	8
100	Mammalian Tissue Distribution of a Large Heparan Sulfate Proteoglycan Detected by Monoclonal Antibodies. Matrix Biology, 1989, 9, 311-321.	1.7	50
101	Basement membrane components produced by a mouse ascites teratocarcinoma TB 24. Experimental Cell Research, 1986, 165, 530-540.	2.6	28
102	Response of cultured rat liver epithelial cell lines to tumour-promoting phorbol esters. Experimental Cell Research, 1985, 156, 311-324.	2.6	8
103	Contact inhibition of phagocytosis in epithelial sheets: alterations of cell surface properties induced by cell-cell contacts Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 719-722.	7.1	45