
Hao-Ching Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Algorithm for Improved Protein Classification Using Graph Similarity. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 3135-3143.	3.0	1
2	Expression of the AHPND Toxins PirAvp and PirBvp Is Regulated by Components of the Vibrio parahaemolyticus Quorum Sensing (QS) System. International Journal of Molecular Sciences, 2022, 23, 2889.	4.1	7
3	Identification and characterization of l-amino acid oxidase 2 gene in orange-spotted grouper (Epinephelus coioides). Developmental and Comparative Immunology, 2021, 120, 104058.	2.3	1
4	Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. European Journal of Medicinal Chemistry, 2021, 219, 113419.	5.5	8
5	Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses, 2021, 13, 1837.	3.3	19
6	Structural insight into the differential interactions between the DNA mimic protein SAUGI and two gamma herpesvirus uracil-DNA glycosylases. International Journal of Biological Macromolecules, 2020, 160, 903-914.	7.5	1
7	A shrimp glycosylase protein, PmENGase, interacts with WSSV envelope protein VP41B and is involved in WSSV pathogenesis. Developmental and Comparative Immunology, 2020, 108, 103667.	2.3	3
8	A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms, 2020, 8, 996.	3.6	16
9	Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and <scp>MADS</scp> transcription factors. Plant Journal, 2019, 100, 706-719.	5.7	16
10	Structural Insights to the Heterotetrameric Interaction between the Vibrio parahaemolyticus PirAvp and PirBvp Toxins and Activation of the Cry-Like Pore-Forming Domain. Toxins, 2019, 11, 233.	3.4	26
11	Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS Pathogens, 2019, 15, e1007826.	4.7	20
12	New paradigm of functional regulation by DNA mimic proteins: Recent updates. IUBMB Life, 2019, 71, 539-548.	3.4	24
13	Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of <i>Trichoderma formosa</i> . Molecular Plant-Microbe Interactions, 2018, 31, 683-691.	2.6	27
14	Dual Inhibition of PIK3C3 and FGFR as a New Therapeutic Approach to Treat Bladder Cancer. Clinical Cancer Research, 2018, 24, 1176-1189.	7.0	43
15	Structural Insights into the Cytotoxic Mechanism of Vibrio parahaemolyticus PirAvp and PirBvp Toxins. Marine Drugs, 2017, 15, 373.	4.6	45
16	The monomeric form of Neisseria DNA mimic protein DMP19 prevents DNA from binding to the histone-like HU protein. PLoS ONE, 2017, 12, e0189461.	2.5	8
17	Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase. Nucleic Acids Research, 2016, 44, 4440-4449.	14.5	14
18	The opportunistic marine pathogen <i>Vibrio parahaemolyticus</i> becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10798-10803.	7.1	427

HAO-CHING WANG

#	Article	IF	CITATIONS
19	White Spot Syndrome Virus Protein Kinase 1 Defeats the Host Cell's Iron-Withholding Defense Mechanism by Interacting with Host Ferritin. Journal of Virology, 2015, 89, 1083-1093.	3.4	22
20	A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay. PLoS ONE, 2015, 10, e0138207.	2.5	10
21	Crowning Proteins: Modulating the Protein Surface Properties using Crown Ethers. Angewandte Chemie - International Edition, 2014, 53, 13054-13058.	13.8	49
22	Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Research, 2014, 42, 1354-1364.	14.5	32
23	The T4 Phage DNA Mimic Protein Arn Inhibits the DNA Binding Activity of the Bacterial Histone-like Protein H-NS. Journal of Biological Chemistry, 2014, 289, 27046-27054.	3.4	28
24	DNA Mimic Proteins: Functions, Structures, and Bioinformatic Analysis. Biochemistry, 2014, 53, 2865-2874.	2.5	46
25	Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein. Nucleic Acids Research, 2013, 41, 5127-5138.	14.5	16
26	<i>Penaeus monodon</i> Thioredoxin Restores the DNA Binding Activity of Oxidized White Spot Syndrome Virus IE1. Antioxidants and Redox Signaling, 2012, 17, 914-926.	5.4	19
27	Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. Nucleic Acids Research, 2012, 40, 5718-5730.	14.5	26
28	Proteomic analysis of differentially expressed proteins in the lymphoid organ of Vibrio harveyi-infected Penaeus monodon. Molecular Biology Reports, 2012, 39, 6367-6377.	2.3	21
29	Substrate binding of a GH5 endoglucanase from the ruminal fungus <i>Piromyces rhizinflata</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1189-1194.	0.7	28
30	The Role of Aldehyde Dehydrogenase and Hsp70 in Suppression of White Spot Syndrome Virus Replication at High Temperature. Journal of Virology, 2011, 85, 3517-3525.	3.4	63
31	Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection. Proteome Science, 2010, 8, 39.	1.7	70
32	Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental and Comparative Immunology, 2008, 32, 476-486.	2.3	47
33	White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20758-20763.	7.1	79
34	Transactivation, Dimerization, and DNA-Binding Activity of White Spot Syndrome Virus Immediate-Early Protein IE1. Journal of Virology, 2008, 82, 11362-11373.	3.4	40
35	Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Developmental and Comparative Immunology, 2007, 31, 672-686.	2.3	142
36	Analysis of differently expressed proteins and transcripts in gills of <i>Penaeus vannamei</i> after yellow head virus infection. Proteomics, 2007, 7, 3809-3814.	2.2	41

#	Article	IF	CITATIONS
37	Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Diseases of Aquatic Organisms, 2007, 74, 179-189.	1.0	36