## Hesam Babahosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8328008/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Single-Cell Mechanical Characteristics Analyzed by Multiconstriction Microfluidic Channels. ACS Sensors, 2017, 2, 290-299.                                                                             | 7.8 | 48        |
| 2  | Biomechanical profile of cancer stem-like/tumor-initiating cells derived from a progressive ovarian cancer model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1013-e1019.          | 3.3 | 41        |
| 3  | Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.<br>Lab on A Chip, 2019, 19, 493-502.                                                               | 6.0 | 38        |
| 4  | Sub-cellular force microscopy in single normal and cancer cells. Biochemical and Biophysical Research Communications, 2015, 463, 587-592.                                                              | 2.1 | 30        |
| 5  | The impact of sphingosine kinase inhibitor-loaded nanoparticles on bioelectrical and biomechanical properties of cancer cells. Lab on A Chip, 2016, 16, 188-198.                                       | 6.0 | 22        |
| 6  | Microfluidic iterative mechanical characteristics (iMECH) analyzer for single-cell metastatic identification. Analytical Methods, 2017, 9, 847-855.                                                    | 2.7 | 14        |
| 7  | Single cell metastatic phenotyping using pulsed nanomechanical indentations. Nanotechnology, 2015, 26, 354004.                                                                                         | 2.6 | 11        |
| 8  | Roles of bioactive Sphingolipid metabolites in ovarian cancer cell biomechanics. , 2012, 2012, 2436-9.                                                                                                 |     | 5         |
| 9  | Using nanotechnology and microfluidics in search of cell biomechanical cues for cancer progression. Nanomedicine, 2015, 10, 2635-2638.                                                                 | 3.3 | 5         |
| 10 | A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation. Biomicrofluidics, 2020, 14, 014112.                                                          | 2.4 | 4         |
| 11 | Microfluidic chip bio-sensor for detection of cancer cells. , 2012, , .                                                                                                                                |     | 3         |
| 12 | Unbalanced bidirectional radial stiffness gradients within the organ of Corti promoted by TRIOBP.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .     | 7.1 | 3         |
| 13 | Active or Passive On-Demand Droplet Merging in a Microfluidic Valve-Based Trap*. , 2018, 2018, 5350-5353.                                                                                              |     | 2         |
| 14 | Dynamic Modeling and Sensitivity Analysis of Atomic Force Microscope Pushing Force in Nanoparticle<br>Manipulation on a Rough Substrate. Advanced Science, Engineering and Medicine, 2013, 5, 801-810. | 0.3 | 1         |
| 15 | Deterministic assembly of chromosome ensembles in a programmable membrane trap array.<br>Biofabrication, 2021, 13, 045005.                                                                             | 7.1 | 0         |
| 16 | Dynamic Modeling of a Spherical Nanoparticle Manipulation by Atomic Force Microscope Probe.<br>Journal of Nanoengineering and Nanomanufacturing, 2013, 3, 98-106.                                      | 0.3 | 0         |